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Abstract: Accurate detection and classification of traffic signs play a vital role in ensuring driver 
safety and supporting advancements in autonomous driving technology. This paper introduces a 
novel approach for traffic sign detection and recognition by integrating the Faster RCNN and 
YOLOX-Tiny models using a stacking ensemble technique. The innovative ensemble methodology 
creatively merges the strengths of both models, surpassing the limitations of individual algorithms 
and achieving superior performance in challenging real-world scenarios. The proposed model was 
evaluated on the CCTSDB dataset and the MTSD dataset, demonstrating competitive performance 
compared to traditional algorithms. All experiments were conducted using Python 3.8 on the same 
system equipped with an NVIDIA GTX 3060 12G graphics card. Our results show improved accu-
racy and efficiency in recognizing traffic signs in various real-world scenarios, including distant, 
close, complex, moderate, and simple settings, achieving a 4.78% increase in mean Average Precision 
(mAP) compared to Faster RCNN and improving Frames Per Second (FPS) by 8.1% and mAP by 
6.18% compared to YOLOX-Tiny. Moreover, the proposed model exhibited notable precision in 
challenging scenarios such as ultra-long-distance detections, shadow occlusions, motion blur, and 
complex environments with diverse sign categories. These findings not only showcase the model’s 
robustness but also serve as a cornerstone in propelling the evolution of autonomous driving tech-
nology and sustainable development of future transportation. The results presented in this paper 
could potentially be integrated into advanced driver-assistance systems and autonomous vehicles, 
offering a significant step forward in enhancing road safety and traffic management. 
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1. Introduction 
With the advancement of computer, communication, and intelligent signal pro-

cessing technologies, Intelligent Transportation Systems (ITSs) are becoming increasingly 
popular. A cornerstone of ITSs is the intelligent detection of traffic signs, foundational to 
autonomous driving technology. Recent research underscores the importance of energy-
efficient transportation infrastructures in smart cities, highlighting the need for innovative 
solutions in traffic and transportation engineering to reduce energy consumption and en-
vironmental impact [1]. Moreover, the integration of smart mobility concepts, such as 
roundabouts, offers new perspectives on safety and efficiency, particularly with the ad-
vent of connected and autonomous vehicles (CAVs) [2]. 

Traffic sign detection and recognition pose numerous challenges due to factors such 
as light intensity, weather conditions affecting images captured by vehicles on actual 
roads, and traffic sign targets typically occupying only a small portion of the entire image. 
From a technical perspective, firstly, applying traditional object detection technology to 
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traffic sign detection and recognition proves challenging. Traditional object detection al-
gorithms [3] employ exhaustive sliding window methods or image segmentation tech-
niques to generate numerous candidate regions, subsequently extracting image features 
for each region, such as Histogram of Oriented Gradient [4] (HOG), Scale-Invariant Fea-
ture Transform [5] (SIFT), and Haar [6] features. These features are then fed into classifiers 
like Support Vector Machine [7] (SVM), Adaboost [8], and Random Forest [9] to categorize 
each candidate area. The computational overhead required to generate candidate regions, 
coupled with the limitations of features extracted by traditional methods, makes them ill-
suited for traffic sign recognition, which demands high speed and accuracy in real-world 
applications. Thus, the accuracy and speed of traditional object detection methods fall 
short of autonomous driving requirements. 

Secondly, traffic sign detection and recognition algorithms based on complex neural 
networks are also found to be inefficient. The introduction of AlexNet [10] by Krizhevsky 
et al. in 2012 significantly brought Convolutional Neural Networks (CNNs) into the spot-
light. Following this, object detection algorithms based on deep neural networks have 
seen rapid development, offering higher accuracy at the expense of increased storage and 
computing power. However, the storage space and computing power available for traffic 
sign detection and recognition tasks are limited, as they are typically deployed on edge 
networks or mobile devices, making complex neural network-based algorithms unsuita-
ble for this purpose. 

Given the shortcomings of the aforementioned approaches, employing lightweight 
convolutional neural networks for traffic sign detection and recognition is currently 
viewed as the optimal strategy. Among single-stage object detection algorithms repre-
sented by You Only Look Once (YOLO) [11] and two-stage algorithms exemplified by 
Faster Region-based Convolutional Neural Network (Faster RCNN) [12], YOLO demon-
strates superior accuracy and speed in the detection of close-range targets but lacks effi-
cacy in detecting distant targets. In contrast, Faster RCNN achieves better precision in 
distant target detection but is less effective in global information extraction and recogni-
tion of proximate objects, with both stages being time-consuming and challenging for real-
time detection. To surmount the limitations inherent in a singular algorithm for target 
detection, this paper integrates the Faster RCNN and YOLOX-Tiny models to devise a 
traffic sign detection and recognition algorithm for identifying traffic signs, aiming to en-
hance the speed and accuracy of driving safety warning feedback through model stacking 
ensemble. This paper makes contributions to the field in the following areas: 
(1) We propose a traffic sign detection and recognition algorithm based on deep neural 

networks that performs object detection on road traffic signs and vehicles. Through 
the method of stacking ensemble, our deep neural network has excellently accom-
plished the task of traffic sign detection and recognition under multi-dataset testing, 
ensuring image processing efficiency while achieving ideal precision, and has 
demonstrated commendable robustness in quantitative analysis experiments and ab-
lation experiments. 

(2) By fusing the Faster RCNN and YOLOX-Tiny models, this structure is capable of 
establishing accurate and efficient traffic design detection. The efficacy of this method 
was assessed on the Changsha University of Science and Technology [13] (CCTSDB) 
dataset and Mapillary Traffic Sign Dataset [14] (MTSD) dataset, which encompass the 
vast majority of traffic signs found across China and globally. Data were categorized 
into five categories: close, distant, simple, moderate, and complex, and the model’s 
performance in each category dataset was verified across multiple dimensions, in-
cluding accuracy, recall rate, AP50, frame processing rate, and mAP. Results demon-
strate the model’s superior comprehensive performance over other benchmark meth-
ods, encompassing both single-stage and two-stage algorithms, including the 
weighted averaging ensemble YOLOX-Tiny-RCNN, YOLOX-Tiny, Faster RCNN, 
and SSD [15], notably leading in accuracy and complex scenarios against numerous 
algorithms. 
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(3) In the quantitative analysis experiments, we tested our model in scenarios including 
ultra-long-distance cases, multiple traffic signs in the same scene, partial occlusion 
cases, shadow interference cases, raindrop interference cases, and motion blur cases. 
The experimental results demonstrate that our model exhibits superior adaptability 
across various complex environments. Furthermore, in the ablation studies, we con-
ducted an in-depth investigation of the model’s convolutional layers and found that 
the model is also sensitively responsive to content in unrecognized signs that are sim-
ilar to recognized content, further proving the robustness of our fusion model. 
The rest of this paper is organized as follows. Section 2 discusses the current literature 

in this research area and identifies the shortcomings in existing solutions. Section 3 delves 
into the proposed stacking ensemble model and its technical architecture in detail. Section 
4 discusses the comparative classification results of this deep neural network against other 
algorithms across multiple scenarios, including qualitative analyses and ablation studies. 
Finally, Section 5 concludes the paper. 

2. Literature Review 
In recent literature, numerous papers have been dedicated to the exploration of traffic 

sign detection and recognition. For this article, we conducted a search for journal articles 
on traffic sign recognition published between 2014 and 2024. Utilizing query strings such 
as traffic sign detection, traffic sign recognition, and traffic sign detection and recognition, 
over one hundred papers were identified. Each paper that provided detailed information 
and results on the recognition stages was read and analyzed in depth. 

The works on traffic sign detection and recognition can be categorized into traditional 
methods and deep learning approaches. In traditional methodologies, features invariant 
to illumination, translation, scaling, and rotation are typically extracted using hand-
crafted methods such as Histograms of Oriented Gradients (HOG), Scale-Invariant Fea-
ture Transform (SIFT), Bag of Words (BoW) [16], Local Binary Pattern (LBP) [17], and 
Haar. Subsequently, common classifiers employed at the classification stage include Sup-
port Vector Machines (SVM), Random Forest, or Artificial Neural Network (ANN) mod-
els, which are trained using these extracted features to classify the signs. The computa-
tional overhead required to generate candidate regions, coupled with the limitations of 
features extracted by traditional methods, makes them ill-suited for traffic sign recogni-
tion, which demands high speed and accuracy in real-world applications. On the contrary, 
deep learning approaches project the raw image into a feature space through the learning 
of a non-linear function, within which the categories are linearly separable. However, 
deep learning methods necessitate extensive computational resources and millions of la-
beled data to achieve satisfactory results. 

In recent years, numerous researchers have explored the use of CNN-based deep 
learning methods to address the Traffic Sign Detection and Recognition problem, such as 
TSD-YOLO [18] (Zhao et al., 2024), Faster RCNN [12] (Ren et al., 2017), Mask RCNN [19] 
(Megalingam et al., 2023), CNN [20] (Rani et al., 2024), and YOLOv7 [21] (Ren et al., 2024) 
models. However, the RCNN model consists of different blocks for classification and re-
gression, which augments the computational demand. SSD- and YOLO-based models are 
less computationally intensive but demonstrate limited accuracy in the detection of small 
traffic signs. 

In the advancement of classic traffic sign detection algorithms, numerous scientists 
both domestically and internationally have employed diverse technologies in integration, 
aiming to achieve enhanced accuracy. L. Chen et al. (2017) [19] introduced a composite 
convolutional neural network, comprising two independent CNNs: one designated for 
superclass recognition encompassing six categories, and the other for subclass recognition 
covering 43 categories. The final label is determined through a vector summation of the 
outcomes from both CNNs. The framework proposed in their study achieved a recogni-
tion accuracy of 95.6%. However, the temporal cost attributed to the proposed framework 
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was 2.7 milliseconds. Despite the results being acceptable, the classification time is con-
sidered too slow for real-time applications. Kedkarn et al. (2015) [22] also utilized tech-
niques like SVM to classify traffic signs from the German Traffic Sign Recognition Bench-
mark (GTSRB). Kumar et al. (2020) [23] proposed an improved SSD (single shot multibox 
detector) algorithm based on a multi-layer convolutional neural network. By selecting the 
optimal aspect ratio of the convolution kernel, the precision of target detection has been 
effectively improved. However, due to the algorithm’s reliance on the default box’s adapt-
ability to the scene, its real-time performance is difficult to guarantee. Tabernik et al. (2020) 
[24] improved the Mask RCNN algorithm for large-scale road sign detection and recogni-
tion issues, proposing a distributed data augmentation technique based on geometric ap-
pearance and visual distortion, but the precision of the algorithm decreased due to loss of 
data in the classification network. Li et al. (2021) [25] presented a cross-layer fusion 
method for multi-object detection and recognition based on an improved Faster RCNN 
model, suitable for complex traffic environments. This method uses the five-layer struc-
ture of VGG16 to obtain more feature information, achieving higher precision in small 
object target detection, but it did not address the issue of Faster RCNN’s poor global in-
formation extraction and close object recognition performance. Carrasco et al. (2023) [26] 
introduced a method for targeting tiny road objects from a holographic perspective, ad-
justing the YOLO-v5 model with a multi-scale module and spatial attention mechanism, 
thus improving the YOLO model’s precision in recognizing small objects, but this algo-
rithm only significantly improves precision in specific scenario detections and lacks ro-
bustness. 

Currently, related research often completes target detection through single-category 
models. Although improvements to the models have enhanced detection effects to some 
extent, it is difficult to balance detection precision and efficiency in actual road condition 
monitoring. Among the single-stage target detection algorithms represented by YOLO 
and the two-stage target detection algorithms represented by Faster RCNN, YOLO per-
forms better in terms of precision and speed for close-range target detection but is less 
effective for detecting distant objects, whereas Faster RCNN has better precision for dis-
tant target detection but is weaker in global information extraction and close object recog-
nition, and the two-stage algorithms are time-consuming, making real-time detection dif-
ficult to achieve. 

From recent research, we find that traditional methods are inadequate for real-time 
traffic sign recognition due to their computational constraints. Deep learning models, es-
pecially CNN-based ones, have shown improved performance but are hindered by the 
need for significant computational power and large annotated datasets. The trend towards 
hybrid models suggests a potential path forward in enhancing detection accuracy and 
computational efficiency. To overcome the limitations of single-algorithm target detec-
tion, this paper integrates the Faster RCNN and YOLOX-Tiny models to design a traffic 
sign detection and recognition algorithm for target detection of traffic signs and vehicles 
with the hope of improving the speed and accuracy of driving safety warning feedback 
through model ensemble. 

3. Methodology 
In this study, we propose a traffic sign detection and recognition model based on the 

Stacking Ensemble (SE) learning method, aimed at addressing the main shortcomings of 
current solutions, namely the difficulty in simultaneously ensuring recognition accuracy 
and efficiency. We opted for stacking (Rashid et al., 2020) [27] over other popular ensemble 
models such as bagging (Kotsiantis et al., 2007) [28] and boosting (Webb and Zheng, 2004) 
[29] because the latter two methods are often used to create homogeneous ensembles, 
which is an ensemble formed from the same type of classifiers (Aburomman and Reaz, 
2016) [30]. Additionally, SE is a machine learning technique that can learn how to combine 
heterogeneous weak base-learners using a meta-learner, thus achieving optimal recogni-
tion accuracy. It forms a hierarchy of different machine learning models by utilizing the 
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predictions of different classifiers from the previous layer, akin to the deep learning ap-
proach. This ensures the diversity of the base classifiers, thereby leading to enhanced 
model performance (Aburomman and Reaz, 2016; Tama and Rhee, 2017; Zhou et al., 2020) 
[30–32]. 

Base-learners and meta-learners constitute the level-0 and level-1 classifiers in an SE 
model, respectively. Compared to single machine learning models, this method demon-
strates improved performance and increased robustness (Zhou et al., 2020; Sarmas et al., 
2022; Zhang et al., 2021 [32–34]); different machine learning models prioritize various in-
put features based on their operational mechanisms to make class predictions. 

3.1. Faster RCNN Model 
The Faster RCNN model is one of the most effective general-purpose target detection 

algorithms in the RCNN series. During driving, it is crucial for drivers to be aware of road 
conditions ahead. However, most target detection algorithms have low efficiency in de-
tecting small objects, sometimes failing to recognize them. By employing the Faster RCNN 
network structure, not only is it possible to detect small objects where previously there 
were none, but there is also a significant improvement in the accuracy of small object de-
tection, with a tolerance rate within a reasonable range. The Faster RCNN network struc-
ture includes four modules: feature extraction network, Region Proposal Network (RPN) 
[12], Region of Interest (ROI) pooling, and classification and regression. Images of fixed 
size M×N are fed into the feature extraction network, utilizing 13 convolutional (conv), 13 
Rectified Linear Unit (ReLU), and 4 pooling layers to extract feature maps. These feature 
maps are then input into the RPN, generating multiple regions of interest after 33 convo-
lutions. The RPN structure classifies anchor points as positive or negative using the Soft-
max function, then calculates the bounding box regression offsets for precise candidate 
selection. The candidate layer integrates positive anchors and corresponding bounding 
box regression offsets to obtain adjusted candidates, eliminating those too small or beyond 
boundaries. Adjusted candidates are projected onto the feature map and scaled to 7 × 7 
region feature maps through the ROI pooling layer, then flattened into fully connected 
layers. Class probabilities are computed via the softmax function, and object positions are 
precisely adjusted through bounding box regression, finally outputting the object’s cate-
gory and precise location in the image. 

3.2. YOLOX-Tiny Model 
YOLOX-Tiny, a lightweight version of YOLOX, features a simplified structure and 

faster detection speed. Its algorithmic framework is divided into the backbone, neck, and 
detection head. Compared to the standard model, it weakens Mosaic and removes Mix, 
yielding good detection performance even on less powerful hardware platforms, thus im-
proving algorithm compatibility [35]. The model consists of a convolutional space module 
(CSM), convolutional space unit (CSU), and convolutional component unit (CCUCR). 
CSM, composed of convolution layers, Sigmoid functions, and Mul functions, extracts 
low-level image features like boundaries and colors. CSU, the feature extraction layer, in-
cludes two CSM layers and an Add function, extracting high-level image features such as 
shapes and structures. CCUCR, the classification layer, identifies different parts of the tar-
get to determine its position and category. In the YOLOX-Tiny network structure, images 
sized M×N are processed through slicing operations and fed into the feature extraction 
network. After extracting image features through two CSM layers, classification is per-
formed using four CSM layers, two CCUCR layers, and an additional two CSM and four 
CCUCR layers. All CCUCR layers are followed by upsampling to ensure detail features 
and resolution, thereby achieving better detection of small objects. Finally, features are 
fused and transposed for output. 

3.3. Model Ensemble 
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3.3.1. Stacking Ensemble 
In this study, we employ two base-learners, namely (1) YOLOX-Tiny, and (2) Faster 

RCNN. Single-stage object detection algorithms like YOLOX-Tiny can meet the require-
ments for accuracy and speed in close-range target detection tasks but perform poorly in 
detecting distant targets. On the other hand, Faster RCNN offers better precision for dis-
tant targets but is weaker in global information extraction and close-range recognition; in 
addition, the two-stage algorithms are time-consuming, making it difficult to ensure suf-
ficient response time in real-time autonomous driving recognition tasks. 

A meta-learner is usually utilized to intelligently combine multiple predictions to re-
duce incorrect detection by employing a single classifier. In our proposed model, the lo-
gistic regression classifier is chosen as the meta-learner due to its simplicity and interpret-
ability, optimally integrating the diverse characteristics of the machine learning models to 
reduce false alarms and enhance detection accuracy and efficiency. In summary, the Stack-
ing Ensemble (SE) model proposed in this article is implemented using the Scikit-Learn 
library (Pedregosa et al., 2011) [36] within the Python programming language. The ma-
chine learning models utilized as base learners include Faster RCNN (faster regions with 
CNN features) and YOLOX-Tiny (You Only Look Once X-Tiny). Furthermore, Logistic 
Regression is employed as the meta-learner, which takes the predictions from the base 
learners as input and then makes the final prediction [37]. 

As is shown in Figure 1, during the training phase, a 5-fold cross-validation approach 
is adopted, allowing the base learners to be trained on 4 folds of the training data, while 
making predictions on the 5th fold. In the first layer of training, we use traditional Faster 
RCNN and YOLOX-Tiny as base learners to produce the results of the first layer training, 
which will then be used for secondary training by the logistic regression in the second 
layer. Layer 2 uses the prediction results of the base learner in Layer 1 as training data for 
a new round of predictions with a logistic regression algorithm. This process is iterated to 
achieve predictions corresponding to the entire training set; the specific iteration process 
is illustrated in Figure 2. Firstly, the traffic sign dataset is collected and preprocessed, in-
cluding image scaling, normalization, and data augmentation, followed by classifying the 
data to adapt to model training. At the same time, considering the impact of external fac-
tors such as lighting, weather, and occlusions on traffic sign detection, relevant data are 
collected to assess the robustness of the model. The dataset is innovatively divided into 
categories such as distant, close, complex, and simple for training, thereby simulating dif-
ferent road conditions. During the model-training phase, the accuracy and efficiency of 
the model are improved by adjusting the network structure and optimizing training strat-
egies, and the model is verified and tested on different datasets to ensure its effectiveness 
in practical applications. 
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Figure 1. Schematic representation of the stacking ensemble model.  
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Figure 2. Flowchart of the iterative structure of the ensemble model. 

3.3.2. Weighted Averaging Ensemble 
Due to the fundamental differences between these two categories of algorithms, the 

resulting accuracy and speed of outcomes vary. To ensure the accuracy and completeness 
of this paper, we have also designed a weighted averaging model ensemble method as a 
control experiment against the stacking ensemble method, aiming to identify the optimal 
model fusion approach. The formula for the weighted average fusion method is as follows: 𝐻(𝑥) = ∑ 𝑤ℎ(𝑥)்ୀ1 , where H denotes the prediction result of the fused model, x repre-
sents the input image, T is the number of individual learners, 𝑤 is the weight of the 𝑖௧ 
individual learner, and ℎ is the prediction result of the 𝑖௧ individual learner. 

Figure 3 illustrates the specific structure of model fusion. Images with pixel dimen-
sions P×Q are scaled to M×N, followed by detection through YOLOX and Faster RCNN 
models individually. The detection results from each model are then computed with pre-
set weights to derive the final outcome. YOLOX-Tiny demonstrates high detection accu-
racy and speed for close-range targets but may not detect distant targets effectively. There-
fore, in this model, distant target detection primarily relies on the Faster RCNN model, 
while close-range recognition depends on the YOLOX-Tiny model. The weights of the two 
models were tested and determined using the CCTSDB dataset. When the target is at a 
moderate distance, the fusion model’s detection accuracy, measured by Recall, mean Av-
erage Precision (mAP) and Frames Per Second (FPS), was tested with different weights for 
the YOLOX-Tiny model ranging from 0.6 to 0.9. Table 1 shows that when the YOLOX-
Tiny weight is set at 0.75, the fusion model performs best. 
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Figure 3. Schematic diagram of the weighted averaging ensemble model structure. 

Table 1. Performance of the ensemble model with different weights for YOLOX-Tiny on the 
CCTSDB dataset. 

Weight Recall MAP FPS  
0.60 85.3% 84.4% 85.0 
0.65 86.8% 85.8% 85.3 
0.70 87.4% 86.5% 86.9 
0.75 92.9% 90.2% 87.1 
0.80 88.4% 87.3% 83.3 
0.85 87.9% 85.5% 84.3 

3.4. Evaluation Standard 
To evaluate the performance of the model in detecting five different categories of 

road traffic targets, Precision (P), Recall (R), mean Average Precision (mAP), and Frames 
Per Second (FPS) were employed for quantitative analysis. The calculations for precision 
and recall are presented in Equations (1) and (2), respectively. Herein, a True Positive (TP) 
is a positive sample predicted as positive by the model, a False Positive (FP) is a negative 
sample predicted as positive by the model, a True Negative (TN) is a negative sample 
predicted as negative by the model, and a False Negative (FN) is a positive sample pre-
dicted as negative by the model.  

The mean Average Precision is calculated based on precision and recall values. In 
tasks involving multi-type target detection, the detection precision of the model is as-
sessed by calculating the mAP across all types, the value of mean Average Precision equals 
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the area under the Precision-Recall (P-R) curve, with higher values indicating greater ac-
curacy of the network. This calculation is detailed in Equation (3). 

In addition to detection accuracy, operational speed is another crucial performance 
metric for target detection algorithms. A common measure of speed is FPS, which denotes 
the number of images processed per second, as expressed in Equation (4). In our study, 
FPS was evaluated using a single NVIDIA GeForce 1080Ti graphics card. 

Precision =  𝑇𝑃𝑇𝑃 + 𝐹𝑃 (1)

Recall = 𝑇𝑃𝑇𝑃 + 𝐹𝑁 (2)

 mean Average Precision =  1
 classes ∑୧ୀଵclasses  ∫ଵ P(R)dR (3)

Frames per Second =  𝑁∑ே 𝑇 (4)

4. Experiments 

In our experiments, we conducted comparative analyses by juxtaposing our fusion 
model against weighted averaging ensemble YOLOX-Tiny-RCNN, YOLOX-Tiny, Faster 
RCNN, SSD, and YOLO v3-Tiny algorithms. These evaluations were performed on the 
CCTSDB dataset, which is segmented into five categories based on the proximity and com-
plexity of the subjects, to objectively assess the merits and demerits of our model. Beyond 
leveraging our methodology on the CCTSDB dataset, which is a resource extensively uti-
lized within the Chinese scholarly community, for cross-dataset experimentation, we also 
employed the MTSD dataset for training purposes due to its inclusion of traffic signs from 
a diverse array of countries. All experiments were conducted using Python 3.8 on the same 
system equipped with an NVIDIA GTX 3060 12G graphics card. Lastly, we evaluated the 
performance of our model in scenarios including ultra-long-distance cases, multiple traffic 
signs in the same scene, partial occlusion cases, shadow interference cases, raindrop inter-
ference cases, and motion blur cases. The detailed outcomes and their respective discus-
sions are delineated in the subsequent sections. 

4.1. Results on CCTSDB 
This study employed the Changsha dataset for model training, which includes five 

categories: indication signs, prohibition signs, warning signs, non-motor vehicles, and 
motor vehicles. The CCTSDB 2021 dataset comprises 20,492 images, divided into a train-
ing set and a positive sample test set, with traffic signs in the images categorized by their 
meaning into indication signs, prohibition signs, warning signs, non-motor vehicles, and 
motor vehicles. The training set contains 18,992 images, numbered from 00,000 to 18,991, 
while the positive sample test set contains 1500 images, numbered from 18,992 to 20,491. 
The negative sample includes 500 negative sample images. 

The dataset was divided into training and testing sets at a ratio of 8:2; the specific 
allocation of sign quantities is illustrated in Figure 4. The training platform used was Py-
thon 3.8, and the graphics card was an NVIDIA GTX 3060 12G. 
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Figure 4. Number of traffic signs per category for (a) training and (b) testing data in CCTSDB da-
taset. 

To evaluate the detection capabilities of the algorithm, a comparative experiment was 
conducted between the model proposed in this paper and the weighted averaging ensem-
ble YOLOX-Tiny-RCNN, YOLOX-Tiny, Faster RCNN, SSD, YOLO v3-Tiny, Improved 
YOLOv4-Tiny [38], and C2Net-YOLOv5 [32] algorithms. Each model underwent 200 
epochs of training, followed by predictions on data pertaining to distant and close targets, 
as well as simple, moderate, and complex scenes. Distant targets were defined as occupy-
ing the upper third of the camera-captured image, while close targets occupied the lower 
two-thirds; a highway with vehicles only ahead constituted a simple scene, a highway 
with vehicles both ahead and to the side a moderate scene, and a highway with vehicles 
ahead, to the side, and with traffic signs a complex scene. We empirically set a learning 
rate of 0.00261, which is increased after training for 90% iterations. The input image size 
is set to 640 × 640 pixels to reduce the training time. For better feature extraction, image 
resolution is increased during testing. Hence, final results are reported on the image with 
resolution 1024 × 1024. 

Table 2 provides a detailed comparison of the performance of several different traffic 
sign detection models under various scenarios. Our paper model achieves high average 
precision (AP50%) across all scenarios, reaching 86.1% in complex scenarios, and leads 
with a score of 88.5% in mean average precision (MAP), indicating that this model has 
excellent generalization and robustness in handling various traffic sign detection tasks. 
Additionally, its FPS reaches 90.7, demonstrating outstanding real-time processing capa-
bilities. The weighted averaging ensemble model performs slightly less well than the pa-
per model, but still maintains a high AP50% across all scenarios, especially in distant and 
simple scenarios where its performance is close to the paper model. This may be attributed 
to the model’s use of a weighted averaging ensemble method, effectively combining the 
prediction results of multiple models to enhance overall performance. YOLOX-Tiny and 
Faster RCNN are both popular object detection models currently in use. YOLOX-Tiny 
performs well in simple scenarios but sees a drop in performance in complex ones, due to 
the limitations of the YOLOX series models in dealing with small targets and complex 
backgrounds. Faster RCNN performs better in close and distant scenarios but has a lower 
average precision in complex scenarios, which may be because the RCNN series models 
are not as fast as the YOLO series models and are relatively weaker in adapting to complex 
backgrounds. YOLOv3-Tiny and SSD have relatively lower average precision across all 
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scenarios, but SSD achieves an FPS of 94.6. This may be because the SSD model employs 
a multi-scale feature fusion strategy, which, although increasing the computational load, 
is beneficial for handling targets of different sizes, thus giving it an advantage in pro-
cessing speed. In addition, Improved YOLOv4-Tiny achieves relatively high average pre-
cision in all scenarios, especially outstanding in close and simple scenarios, and slightly 
lower in complex scenarios compared to the paper model, but still with a MAP of 86.8% 
and an FPS of 88.4, showing that it maintains high accuracy while also having good pro-
cessing speed. The C2Net-YOLOv5 model also shows high average precision in all sce-
narios, with performance close to Improved YOLOv4-Tiny in close and complex scenar-
ios, and slightly better in moderate scenarios, with a MAP of 86.6% and an FPS of 85.8. 
This result may reflect the good balance of performance of C2Net-YOLOv5 in different 
scenarios, especially in handling complex scenes. Moreover, this model’s FPS is slightly 
lower than that of Improved YOLOv4-Tiny, but it is still at a high level, indicating that it 
is also effective in real-time processing. Overall, although the “Improved YOLOv4-Tiny” 
and “C2Net-YOLOv5” models approach the performance of our fusion model in some 
performance indicators, our model still shows the best balance of performance when con-
sidering different scenarios comprehensively. 

Table 2. The performance of the paper model compared to other algorithms on the CCTSDB dataset. 

Model 
AP50/% 

MAP/% FPS/(Frame·s−1) 
Close Distant Simple Modest Complex 

Paper model 93.1 85.7 93.8 88.6 86.1 88.5 90.7 
Weighted averaging ensemble 

model 
91.2 85.3 91.3 88.3 84.5 85.4 87.6 

YOLOX-Tiny 90.4 85.0 91.4 89.2 85.3 85.7 83.9 
Faster RCNN 90.0 86.1 92.2 86.8 83.2 84.5 94.1 
YOLOv3-Tiny 89.7 83.3 90.2 86.4 83.8 82.5 88.3 

SSD 89.1 83.5 91.0 87.2 82.7 82.3 94.6 
Improved YOLOv4-Tiny 91.7 85.4 92.4 89.2 85.5 86.8 88.4 

C2Net-YOLOv5 91.4 85.6 92.3 88.9 86.1 86.6 85.8 

Figure 5 shows the loss function curves for detecting targets at close and distant 
ranges. As evident from Figure 5, with increasing training iterations, the loss function 
curves of all algorithms tend to stabilize without showing signs of overfitting. In the de-
tection of distant targets, YOLOX-Tiny and YOLOv3-Tiny exhibit significant fluctuations 
and higher maximum values in their loss function curves, indicating a generally unstable 
detection capability of the YOLO model for distant targets. YOLOv3-Tiny is less efficient 
overall than YOLOX-Tiny, due to the latter’s introduction of an anchor-free model com-
pared to YOLOv3. When detecting close targets, the differences in the loss function curves 
of the algorithms are negligible. However, the advantages of the algorithm proposed in 
this paper are clear in the detection of distant targets, showing a significant improvement 
over the initially weaker detection capabilities of YOLOv3-Tiny and YOLOX-Tiny for dis-
tant targets. Compared to SSD and Faster RCNN, the loss function curve of the proposed 
algorithm is also smoother. Coupled with the results from Table 2, the stacking ensemble 
model requires less computational effort and offers superior detection performance, bal-
ancing the needs for detection speed and accuracy. Unlike common methods that trade 
off some detection speed for higher accuracy, such as bootstrapping aggregation, the 
stacking ensemble algorithm based on the weighted average method is more suited for 
detecting targets in the peripheral vision of drivers on highways and in densely populated 
areas, contributing to enhanced driving safety. 
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(a) 

 
(b) 

 
Figure 5. Loss function curves for near (a) and far (b) traffic sign detection in CCTSDB dataset. 

4.2. Results on MTSD 
To ensure the generalizability and universality of the methods presented in this pa-

per, we also selected the Mapillary Traffic Sign Dataset (MTSD) dataset, which includes 
traffic signs from a global spectrum, for experimentation. The fully annotated set of the 
MTSD includes a total of 52,453 images with 257,543 traffic sign bounding boxes. The ad-
ditional, partially annotated dataset contains 47,547 images with more than 80,000 signs 
that are automatically labeled with correspondence information from 3D reconstruction. 
Figure 6 illustrates the traffic signs of various categories within the MTSD dataset. We 
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have trained our model for 28,000 iterations on the dataset. The dataset was divided into 
training and testing sets with a ratio of 8:2. The training platform used was Python 3.8, 
and the graphics card was an NVIDIA GTX 3060 12G. 

 
Figure 6. Traffic signs of various categories within the MTSD dataset. 

Utilizing the MTSD dataset, which encompasses a broader range of shapes and colors 
within each traffic sign category, all models generally exhibited lower mAP values on 
MTSD compared to the CCTSDB dataset. In contrast to their performance on the CCTSDB 
dataset, our model demonstrated superior performance on MTSD. This dataset’s inclusion 
of a greater number of targets classified into varied categories led to a diversification of 
labels for identical target objects, complicating the model’s ability to learn features within 
a single category. For instance, the Regulatory category in the MTSD dataset comprises 
176 distinct target objects, and the Complementary category includes 45 different targets, 
with the Warning and Information categories also containing a multitude of varied objects.  

Table 3 provides a performance comparison between our proposed fusion model and 
several classic traffic sign detection and recognition algorithms. It can be observed from 
the table that our paper model outperforms other models in terms of Precision, Recall, 
and mean Average Precision (MAP), with a MAP of 87.6%, indicating a significant ad-
vantage in recognition accuracy. Additionally, the model’s FPS is 85.2, demonstrating 
good real-time processing capabilities. Other models such as YOLOX-Tiny, Faster RCNN, 
YOLOv3-Tiny, and SSD also perform well but still lag behind our paper model. YOLOX-
Tiny’s MAP is 82.5%, and Faster RCNN’s is 83.6%, both lower than our model. YOLOv3-
Tiny and SSD also fall behind our model in terms of Precision and Recall, although SSD’s 
FPS has reached 85.9, showing a faster processing speed. It is worth noting that the “Im-
proved YOLOv4-Tiny” and “C2Net-YOLOv5” models also show strong competitiveness 
in some aspects. “Improved YOLOv4-Tiny” scored 84.0% in Precision and 82.4% in Recall, 
with a MAP of 86.6%, and an FPS of 85.0, showing performance close to our model. 
“C2Net-YOLOv5” performed the best among all other models, with Precision and Recall 
of 83.9% and 82.7% respectively, a MAP as high as 86.9%, and an FPS of up to 93.6, indi-
cating its potential advantages in both recognition accuracy and processing speed. Over-
all, although the “Improved YOLOv4-Tiny” and “C2Net-YOLOv5” models approach the 
performance of our fusion model in some performance indicators, our model still shows 
the best balance of performance when considering Precision, Recall, and processing speed 
comprehensively. These results indicate that our fusion model not only performs best in 
accuracy but also has strong competitiveness in real-time processing capabilities, making 
it an ideal choice for traffic sign detection tasks. 

Table 3. The performance of the paper model compared to other algorithms on the MTSD dataset. 

Model Precision/% Recall/% MAP/% FPS/(Frame·s−1) 
Paper model 85.5 83.3 87.6 85.2 

Weighted averaging ensemble 
model 82.9 81.8 84.3 86.3 
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YOLOX-Tiny 82.6 82.4 82.5 80.9 
Faster RCNN 83.3 82.6 83.6 85.7 
YOLOv3-Tiny 78.6 80.4 78.9 81.3 

SSD 78.2 79.2 79.0 85.9 
Improved YOLOv4-Tiny 84.0 82.4 86.6 85.0 

C2Net-YOLOv5 83.9 82.7 86.9 93.6 

4.3. Qualitative Analysis 
In this section, we conducted a qualitative analysis of the images output by our model 

across various categories and scenes, showcasing the performance of our model on these 
images. 

Initially, we presented the results of our model on the CCTSDB dataset images, fol-
lowed by its performance on the MTSD dataset. Figure 7a depicts images of traffic signs 
detected from a considerable distance on a vehicle, which are not clearly visible to the 
naked eye, yet our model has accurately detected and recognized these signs with 99% 
and 98% confidence. Figure 7b shows images of traffic signs located on a highway. A va-
riety of traffic signs are present in a single location, but our model has successfully de-
tected all traffic signs and accurately labeled each one, including various indication signs 
(ISs) and prohibition signs (PSs), with all road traffic signs detected with over 99% confi-
dence. Figure 7c illustrates a scenario with a partially obscured traffic sign. Our model 
successfully detected the indication sign (IS) with 98% confidence, despite it being only 
partially visible. Moreover, Figure 7d displays traffic signs under various lighting condi-
tions, where the signs are shrouded in shadow and exhibit lower visibility compared to 
daylight conditions. Our model identified the warning sign (WS) with 98% confidence, 
demonstrating the robustness of our model under varying light conditions. 

  
(a) (b) 

  
(c) (d) 

Figure 7. Recognition by paper model in various complex scenarios within the CCTSDB dataset. 

Furthermore, we performed a qualitative analysis on images from the MTSD dataset. 
The MTSD dataset comprises images of varied resolution and includes more challenging 
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images under different conditions. It is a global dataset containing signs in various lan-
guages. Figure 8a shows an image of a traffic sign during rain, where raindrops are visible 
on the lens, yet our model correctly predicted the warning sign and indication sign with 
90% and 94% confidence, respectively. Under adverse weather conditions, drivers may 
not clearly see the different traffic signs due to low visibility. Motion blur, caused by 
movement, also presents a challenge in detecting signs while driving. Figure 8b displays 
a case where a warning sign, which closely resembles the color of the surrounding soil, is 
still successfully recognized by our model. Figure 8c demonstrates that, in a strong light 
environment, a No Speeding Over 40 prohibition sign completely covered by shadows is 
still successfully recognized by our fusion model. Figure 8d illustrates the capability of 
our model to recognize traffic signs partially obscured by the shadows of leaves, success-
fully detecting the indication sign with 99% confidence. The experiments indicate that our 
model is capable of accounting for these scenarios and performs better accordingly. 

  
(a) (b) 

  
(c) (d) 

Figure 8. Recognition by paper model in various complex scenarios within the MTSD dataset. 

4.4. Ablation Experiments 
In this section, we examine the capability of our neural network to recognize traffic 

signs in the test set that were not previously learned during training, from the perspective 
of computer vision. Initially, we removed the right-hand curve and left hand curve signs 
from the MTSD dataset and trained the model on the modified MTSD dataset; the exper-
iments were conducted using Python 3.8 on the same system equipped with an NVIDIA 
GTX 3060 12G graphics card. The results demonstrated that all right-hand curve and left-
hand curve signs were recognized as Y-intersections. From Figure 9, it can be observed 
that all warning category signs feature a triangular warning symbol, and signs indicating 
left-hand curve, right-hand curve, and Y-intersections bear a certain resemblance. There-
fore, we have reason to suspect that our model is capable of recognizing parts of the signs 
in untrained images that have been identified. 
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Figure 9. Comprehensive chart of various warning category signs. 

To investigate the cause of this phenomenon, we analyzed the activation strength in 
the convolutional layers. We observed the first convolutional layer, as this layer extracts 
the simplest patterns of the deep network. The deeper the layer, the more complex and 
difficult to understand the patterns become. The information is summarized in the bar 
chart presented in Figure 10. Observing the first convolutional layer, we discovered that 
only 57% of the channels extracted the curve signs, 18.6% included the triangle warning 
symbol, 14.5% were empty, and 58.3% had the strongest activation. Thus, 75.6% of the 
channels extracted at least one warning symbol or curve signs. This explains why these 
signs were ultimately classified as Y-intersections. On the other hand, all Y-intersection 
scenarios were correctly classified. From Figure 10b, it was observed that 64.65% of the 
channels extracted the intersection sign, 17.68% extracted the warning symbol, 3.63% of 
the channels were empty, and 66.73% had the strongest activation. 

 
(a) 
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(b) 

Figure 10. Statistical chart of model feature extraction for curve (a) and Y-intersection (b) scenarios. 

The initial ablation study indicated that the activation channel’s intensity diminishes 
when our neural network is presented with a sign it has not encountered during training, 
resulting in a higher prevalence of inactive channels in the primary convolutional layer. 
This deactivation occurs as the left-hand curve, right-hand curve, and Y-intersection signs 
share a common element: the warning symbol. Consequently, our stacking ensemble 
model YOLOX-Tiny-RCNN demonstrates robustness by being able to recognize compo-
nents of traffic signs that were not part of its training regimen. 

The subsequent segment of the ablation research focused on assessing the impact of 
batch size on the training of the network. Each network underwent training utilizing the 
hyperparameters delineated in Table 4 on the CCTSDB dataset. The investigation involved 
modifying the batch size to 64, 128, and 256, respectively. 

Table 4. Summary of hyperparameters used on the CCTSDB dataset. 

Hyperparameters Paper Model 
Learning rate 0.001 

Factor for dropping the learning rate 0.1 
Number of epochs for dropping the learning rate 8 

Maximum number of epochs 40 
Momentem 0.9 

Shuffle Once 

Figure 11 describes the mean Average Precision (mAP) performance across different 
batch sizes for paper’s model and two classical models. For the Faster RCNN model, mean 
Average Precisions (mAPs) of 79.96%, 82.90%, and 83.61% were realized for batch sizes of 
64, 128, and 256, respectively, indicating an enhancement in network performance with 
an increase in batch size. With regard to the YOLO X-Tiny model, a mAP of 82.65% was 
recorded for both batch sizes of 64 and 128. A slight increment to 83.60% was observed 
when the batch size was augmented to 256, highlighting a minimal network improvement 
as the batch size expanded. Subsequently, the stacking ensemble model presented in this 
study was evaluated. Accuracies of 84.71%, 85.67%, and 84.67% were attained for batch 
sizes of 64, 128, and 256, respectively. It was noted that, relative to the initial batch size of 
64, modifications to batch sizes 128 and 256 did not manifest significant changes in the 
performance of our stacking ensemble model. 
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Figure 11. Mean Average Precision (mAP) performance across different batch sizes for paper’s 
model and two classical models. 

5. Conclusions 

In this paper, we proposed a novel model designed to address the challenge of real-
time traffic sign detection and recognition by leveraging the YOLOX-Tiny and Faster 
RCNN frameworks. Through the stacking ensemble process, we significantly enhanced 
the neural network’s robustness in detecting and recognizing traffic signs. We categorized 
the Changsha University of Science and Technology dataset into five classes based on the 
content captured by the camera: complex, moderate, simple, long-range, and close-range. 
Extensive experiments were conducted on the proposed model, as well as several classical 
single-stage and two-stage models. Unprecedented mean Average Precision (mAP) scores 
of 94.80% and 80.71% were achieved on these datasets, respectively. Additionally, exper-
iments were conducted on the MTSD dataset to assess the model’s performance on traffic 
signs that encompass a broader range of colors and more complex scenarios. In subse-
quent quantitative analysis experiments, including scenarios such as ultra-long-distance 
cases, multiple traffic signs in the same scene, partial occlusion cases, shadow interference 
cases, raindrop interference cases, and motion blur cases, recognition accuracy of over 
98% was consistently achieved. 

The traffic sign recognition algorithm proposed in this paper offers valuable insights 
for further developments in the field, providing a more diversified model structure that 
enhances recognition accuracy while ensuring processing efficiency. This efficient traffic 
sign recognition technology is pivotal for improving the safety of autonomous vehicles, 
helping to reduce traffic accidents and increasing road usage efficiency, thereby promot-
ing the sustainable development of transportation systems. Moreover, by accurately rec-
ognizing traffic signs, traffic flow management can be optimized, reducing congestion, 
and lowering energy consumption and emissions, which is significant for achieving an 
environmentally friendly transportation system. 

In future work, we plan to conduct experiments on the ITSD dataset and include 
more challenging images for training and testing with diverse models. Furthermore, we 
aim to focus on integrating a model capable of effectively processing challenging images, 
such as those that are blurry, partially visible, or of poor quality. These improvements will 
further enhance the model’s applicability under real-world conditions and contribute to 
the realization of smarter, safer, and more environmentally friendly transportation sys-
tems. Through these efforts, we expect to provide strong technical support for the sustain-
able development of future transportation. 
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