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Abstract— In the domain of autonomous vehicles, the human-
vehicle co-pilot system has garnered significant research at-
tention. To address the subjective uncertainties in driver state
and interaction behaviors, which are pivotal to the safety of
Human-in-the-loop co-driving systems, we introduce a novel
visual-tactile perception method. Utilizing a driving simulation
platform, a comprehensive dataset has been developed that
encompasses multi-modal data under fatigue and distraction
conditions. The experimental setup integrates driving simula-
tion with signal acquisition, yielding 600 minutes of fatigue
detection data from 15 subjects and 102 takeover experiments
with 17 drivers. The dataset, synchronized across modalities,
serves as a robust resource for advancing cross-modal driver
behavior perception algorithms.

Keywords: Visual and tactile data, driver state, driver
behavior, intelligent cockpit, autonomous vehicles

I. INTRODUCTION

In recent years, data-driven autonomous vehicles have
encountered SOTIF (Safety of the Intended Functionality)
issues and long-tail challenges in their AI algorithms. These
challenges arise due to the complexity and unpredictability
of real-world scenarios where autonomous vehicles must
navigate, requiring robust algorithms for safe operation under
various conditions. Furthermore, the uncertainty in driver
non-driving behavior1 and abnormal state2 within the context
of human-vehicle co-driving further exacerbates the chal-
lenges faced by autonomous vehicles. Perceiving and pre-
dicting the driver’s uncertain behaviors accurately is crucial
for developing effective AI algorithms that can adapt and
respond appropriately.

As an individual with fully independent behavior possess-
ing subjective initiative uncertainty and individual discrep-
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1The uncertainty in driver non-driving behavior refers to situations where
the driver is not fully engaged in the primary driving task due to factors
like fatigue or distraction.

2Abnormal state refers to the unpredictability in driving behavior caused
by changes in the driver’s state, which elevates the risk in human-machine
interaction.

ancy, drivers may become increasingly reliant on autonomous
systems as driving intelligence advances, leading to drowsi-
ness, slower reaction times, and reduced risk perception[1,
2]. Furthermore, the addition of in-vehicle entertainment
features introduces a potential risk of distracted driving.
Research indicates that driver behavior is a key factor in most
road traffic accidents, with fatigue and distraction being the
primary causes[3, 4]. Changes in a driver’s state increase the
uncertainty of driving behavior and raise the risks associated
with human-machine interaction, impeding the development
of intelligent human-machine hybrid driving modes. There-
fore, perceiving and understanding driver behavior and state
has become a critical area for research breakthroughs.

To address these challenges, it is essential to collect high-
quality datasets on fatigue and distraction, enhancing the
ability to detect driver risks in intelligent co-driving sys-
tems and reducing potential dangers. These datasets should
cover a wide range of driving conditions, human behavioral
characteristics, and the specific interaction patterns found in
human-machine co-driving scenarios.

The availability of human-vehicle co-driving datasets is
crucial for the development and evaluation of artificial
intelligence algorithms in autonomous vehicles. However,
existing datasets for human-vehicle joint driving applications
are still quite limited, especially in monitoring key states
such as driver fatigue and distraction, and existing datasets
are often limited in scope and depth, lacking the nuanced
information required to address these challenges effectively.
This paper proposes a multimodal cross-sensing method
combining visual and haptic channels under controlled en-
vironmental conditions and constructs the VTD (Visual and
Tactile Database for Driver State and Behavior Perception),
a comprehensive, well-structured, large-scale dataset. The
VTD dataset not only covers diverse driving conditions and
human behavior characteristics but also places particular
emphasis on monitoring and recording driver fatigue and
distraction states. These data will help enhance the percep-
tion and understanding capabilities of autonomous driving
systems regarding driver states in intelligent co-driving sce-
narios, thereby improving the safety and reliability of human-
machine interaction and effectively reducing potential risks.

The contributions of VTD dataset are as follows:
1) This paper presents the VTD, a long-sequence multi-

modal natural driving dataset based on the fusion of visual
and haptic data, which includes over 10 hours of fatigue driv-
ing data and 102 takeover scenarios. It effectively captures
the multi-path driving conditions, as well as the mental and
physical states and behavioral characteristics of drivers in



multimodal environments.
2)The VTD is developed using a human-in-the-loop al-

gorithm to ensure that the collected data accurately reflects
real-world driving behavior. Additionally, the boundaries
of driving environment are clearly defined, facilitating the
quantification of the influencing mechanisms behind the
driving behaviors of different groups.

3) Serving as a standardized platform for benchmarking in
the field of human-vehicle co-driving, VTD offers valuable
data support for cross-modal perception algorithms and sce-
narios related to driver fatigue and distraction. This capability
significantly advances research in driver behavior perception.

II. RELATED WORK

In designing human-vehicle collaboration systems, recog-
nizing the driver’s intent, modeling behavior, and monitoring
their state are critical. Despite advancements in autonomous
driving technologies, the driver remains the core of sys-
tem coordination[5]. Therefore, accurately monitoring the
driver’s fatigue and distraction is essential to ensure the safe
operation of human-machine collaborative systems.

Driver state monitoring primarily focuses on physiolog-
ical and psychological factors. Driver behavior monitoring
involves analyzing specific behaviors during driving to infer
their state and decision-making process. Behavior is an
external manifestation of the state: the former reflects specific
actions, while the latter represents the mental and physical
condition. By observing driving behavior and measuring
physiological and psychological indicators, a more com-
prehensive inference of the driver’s fatigue or distraction
can be made. This paper will introduce datasets in the
field of human-vehicle collaboration from the perspectives
of driver state and behavior, along with their applications
and limitations in driver monitoring and human-vehicle co-
driving system optimization.

A. Datasets for Driver State

As mentioned earlier, fatigue and distraction are the two
main factors affecting driving safety. Therefore, this section
will primarily focus on the current methods and datasets for
monitoring driver distraction and fatigue, and analyze their
applicability and limitations in real-world scenarios.

Research on driver distraction monitoring3 has varied fo-
cuses. In recent years, the rise of AI algorithms for computer
vision has led to a growing interest in analyzing driver
behavior through visual perception methods. This includes
studying facial expressions [6] and head gestures [7]. Key
features commonly extracted in these studies are eye fixation
duration, scan paths, eye-opening and eye-closing patterns,
and head rotation angles. In addition, driving distraction
monitoring and behavior analysis can also be achieved by
using vehicle sensors to monitor vehicle conditions, such
as steering wheel angle and accelerator pedal position, or
by physiological indices such as driver Electrocardiogram

3NHTSA describes the distraction process as ”any activity that diverts a
driver’s attention away from the task of driving” and classifies it into visual,
auditory, bio-mechanical, and cognitive distractions

(ECG) [8, 9], Electroencephalogram (EEG) [10–12], Elec-
tromyography (EMG), and Galvanic Skin Response (GSR)
[11].

Visual-based driver distraction monitoring accuracy is still
limited in an actual driving environment due to problems
including low resolution, motion blur, dynamic background,
and occlusions [13]. Hand movements, head gestures [7],
gaze direction [14], and pedal control are the keys to
addressing the problems. Moreover, existing datasets still
cannot characterize diverse, ambiguous, and personalized
distraction behaviors influenced by the driver’s physiological
and psychological state[15–20]. The investigations of the
above datasets demonstrate a need for fine-grained distrac-
tion datasets with controllable and quantifiable conditions,
multi-modal synchronized data, and data about driver dis-
traction feature diversity.

Aside from driving distraction detection, driver fatigue is
likewise an important research direction of driver behavior
and state perception. Fatigue is displayed in various forms.
Based on eye feature extractions, PERCLOS (percent eye
closure), eye-white reflex, eye states, and yawning condition-
sare included[21]. It can also be displayed through detection
based on eye-mouth combinations [22], eyelid closure and
eye closure percentage combinations [23], FatigueTree [24],
and other combinations.

We gathered and analyzed existing DMS datasets[16,
24–29] and discovered that in many datasets, fatigue is
monitored by recording drivers’ facial features under natural
driving conditions using RGB cameras. These natural-driving
datasets face challenges in extracting driver fatigue features
under nighttime dimmed lighting conditions or facial occlu-
sions, and different types of physiological fatigue signals
cannot be captured with a single vision. Differences in road
environments may also lead to differences in driving loads,
making it impossible to analyze the cause of fatigue and
extract the differentiated impact on drivers. Additionally,
most of the existing single-mode visual datasets about driver
fatigue only concentrate on relatively monotonous visual
features like blinking and yawning [25, 26], which lack time
series and contextual features. Algorithms carried out on
these single-mode datasets are too restrictive to be applied
in reality and cannot contain all challenges[24]. It is increas-
ingly essential to determine how to provide greater flexibility
and diversity in driver monitoring using multi-modal data
to characterize fatigue signals and more complicated state
combinations. However, the lack of a complete and compre-
hensive dataset in this field has bottlenecked the progress in
algorithm development of driver fatigue detection [16].

B. Datasets for Driver Behaviors

Driver behavior is distinct from the driver’s state. It
refers to the specific movements a driver makes during the
driving process, such as turning, accelerating, decelerating,
and braking. Driver behavior can be captured and analyzed
using vehicle sensors, cameras, and other monitoring devices.
It is often associated with specific driving skills and traffic
regulations, such as speeding, frequent lane changes, and



running red lights. In essence, driver behavior encompasses
the specific actions and maneuvers made by the driver,
whereas driver state refers to their physical and mental
condition. The driver’s state can be indirectly inferred by
observing and evaluating their behaviors and by measuring
relevant physiological indicators. Modeling and understand-
ing a driver’s state through their behavior is essential for
ensuring safety and facilitating assisted driving [30]. To
enhance driving safety, future intelligent vehicles should be
capable of autonomously assessing the driver’s behavior and
competence using onboard sensors and operational data.

Fig. 1: Research Gap in Driver Behavior and Driver State

Natural driving data is a vital resource for learning and
understanding driving behaviors [30]. Vehicle operations and
driver behavior data are captured and collected through
cameras and sensor arrays, providing essential support for
research in this field. However, natural driving datasets
often lack a unified boundary [31, 32], and there is limited
coupling of data on driver behaviors and states, making it
challenging to perform quantitative analysis on contributing
factors. Additionally, most datasets are outdated and suffer
from low data quality due to limited device accuracy, ren-
dering them inadequate for current needs. Publicly available
natural driving datasets are also scarce because of the high
cost of data collection4. The VTD dataset aims to provide
new options for advancing research in this field.

III. METHODOLOGY
This section proposes a multi-view and multi-modal

database named VTD for studying driver distraction and fa-
tigue behaviors. It consists of multi-modal signals, including
frontal images, ECG signals, and vehicle signals. To em-
phasize the practicality and authenticity of VTD, a platform
was developed that integrates driving simulation and multi-
modal signal acquisition functions to conduct experiments.
Finally, the dataset was constructed through data processing
and analysis to extract features related to driver state and
behavior perception.

A. Overall Framework

Driving data from 15 subjects in a fatigued condition and
takeover experiment data from 17 distracted participants are

4UTDrive, a large-scale natural dataset, includes driving data from 500
drivers across three countries, covering vehicles, sensors, and routes. In
addition to UTDrive, the SHRP2 and MIT-AVT projects also focus on
gathering natural driving data.

included in the VTD dataset. All participants were fully
informed about the research background and procedures, and
they consented to participate by signing a written informed
consent form. Detailed information about the subjects is
provided in Table I. This paper will separately describe the
specifics of the two data collection experiments and the data
processing procedures.

Experiment Gender Age Driving Experience
male female mean SD mean SD

Fatigue 12 3 32.2 6.14 3.73 3.16
Distraction 14 3 33.7 6.45 4.61 3.65

TABLE I: Basic Information of Participants

Figure II summarizes the VTD experimental process and
data collection infrastructure, as illustrated. (a) Physical dia-
gram of the data acquisition platform, including the monitor,
G29 steering wheel and pedal set, RGB camera, and ECG
equipment. (b) Framework for fatigue driving experiments.
(c) Flowchart for generating fatigue data labels. Data is la-
beled based on subjective and objective evaluations to assess
driver behavior. (d) Examples of facial videos of drivers
in distracted and fatigued states during driving simulation.
(e) Experimental setup for fatigue and distraction driving
models5. (f) Framework for distracted driving experiments.
(g) Process for distracted driving takeover experiments.

B. Fatigue Driving Experiment
The Fatigue dataset includes a processed time-series

dataset and a raw simulation scenario video dataset. The time
series dataset comprises eleven dimensions and is divided
into a training set, a validation set, and a testing set in a
ratio of 4:1:1.The total number of valid samples is 480, with
a time slice of 60 seconds and a frame number of 1800. The
dataset labels were modified based on KSS and SSS fatigue
scales, and subjective evaluations were completed.

To construct a driver fatigue detection dataset, we collected
information from participants and assigned pre-fatigue status
according to age, sleep duration, and napping habits. Table II
shows the pre-fatigue status of the participants. Participants
were required to complete the pre-fatigue accumulation ac-
cording to the assigned status. During the testing stage, the
functionality of the platform connection and the data col-
lection program was verified. Participants were instructed to
complete the experiment preparations and driving adaptation
under the operation instructions. They then performed the
experiment wearing eye movement equipment and holding
the electrode area of the steering wheel. They entered the
appointed conditions and drove for 40 minutes continuously,
during which they should keep their hands on the electrodes
on the two sides. When the staff issued the prompt ”report
the current status” every five minutes, the participants should
complete their self-evaluations while the staff completed
their assessments on the participants, combining the obser-
vation results and reported results.

5To trigger distraction and fatigue, the scene is sparsely populated with
vehicles, providing a wide driving view.



Fig. 2: VTD Data Collection Infrastructure

State Requirements

A1

Regular sleep: Ensure normal adequate sleep the night
before the experiment. The experiment can be con-
ducted in both the morning and afternoon. If in the
afternoon, the nap time should be more than 0.5 hours.

A2
Nap deprivation: Ensure normal adequate sleep the
night before the experiment. Conduct nap deprivation
and the experiment only in the afternoon.

A3

Partial night sleep deprivation: Deprived of 40%-60%
sleep the night before the experiment. No additional
sleep on the day of the experiment. The experiment
could be conducted in the morning and afternoon.

A4

Total night sleep deprivation: Deprived of over 80%
sleep the night before the experiment. No additional
sleep on the day of the experiment. The experiment
could be conducted in the morning and afternoon.

TABLE II: The Pre-Fatigue States of the Participants

We generalized the different types of data collected as
video data, vehicle data, and ECG data. The data were
processed in different ways according to their characteristics.

For the driver frontal behavior information, the Mediapipe
Facemesh model[33] was adopted for face landmark estima-
tion,extracting 478 key coordinates of the driver’s face6 and
characterized their mouths and eyesby Mouth Aspect Ratio
(MAR) and Eye Aspect Ratio (EAR). The MAR and EAR

6Facial coordinate information can refer to: https://github.com/
google-ai-edge/mediapipe/blob/master/mediapipe/
modules/face_geometry/data/canonical_face_model_uv_
visualization.png

values of each image frame are concatenated to form a time
series. As indicated by the key points in the figure, the EAR
and MAR are calculated as follows:

MAR =
∥ P82 − P87 ∥2 + ∥ P312 − P317 ∥2

4 ∥ P78 − P308 ∥2
(1)

EAR =
∥ P387 − P373 ∥2 + ∥ P385 − P380 ∥2

4 ∥ P263 − P362 ∥2

+
∥ P158 − P153 ∥2 + ∥ P160 − P144 ∥2

4 ∥ P133 − P33 ∥2
(2)

For driver head pose capture, we used Euler angles to char-
acterize the rotational pose of the head. The Euler angle is
derived by utilizing the facial key point information obtained
from Facemesh and solving the rotation matrix by the PnP
(Perspective-n-Point) algorithm. Note that the camera needs
to be calibrated because its parameters affect the mapping
relationship of the spatial points in the plane. This study
employs a planar tessellated grid, calibrated using the Zhang
Zhengyou calibration method to obtain the camera’s internal
parameters and distortion coefficients.

During driving, the steering wheel installed with flexible
electrodes can be connected to the host computer via USB,
and the driver’s ECG signals are acquired in real time by
holding the steering wheel, with a sampling frequency of 250
Hz. This paper focuses on processing and feature extraction
of ECG signals,primarily concentrating on the R-wave and
utilizing the R-R intervals to compute the characteristics of

https://github.com/google-ai-edge/mediapipe/blob/master/mediapipe/modules/face_geometry/data/canonical_face_model_uv_visualization.png
https://github.com/google-ai-edge/mediapipe/blob/master/mediapipe/modules/face_geometry/data/canonical_face_model_uv_visualization.png
https://github.com/google-ai-edge/mediapipe/blob/master/mediapipe/modules/face_geometry/data/canonical_face_model_uv_visualization.png
https://github.com/google-ai-edge/mediapipe/blob/master/mediapipe/modules/face_geometry/data/canonical_face_model_uv_visualization.png


heart rate and heart rate variability. For heart rate variability,
the standard deviation of the R-R interval (SDNN) and the
root mean square of the difference of the R0R interval
(RMSSD) are used as metrics. To address baseline drift,
IF interference, and EMG noise that occurr during the
acquisition process, a Butterworth bandpass filter is applied.

For the vehicle data, we obtained them during real-time
driving through the control signal of G29 with a sampling
frequency of 100Hz, including the steering wheel angle, gas
pedal signal, brake pedal signal, vehicle speed, and vehicle
traverse angle speed.

C. Distracted Driving and Takeover Experiment

Regarding the driving takeover dataset, each participant is
asked to perform three takeovers during visual and auditory
subtasks in the investigation. Initially, the vehicle is in the
autonomous driving phase while participants perform non-
driving tasks on a tablet computer. When the system prompts
a message to take over, drivers operate the vehicle while staff
record relevant data and address unexpected situations.

This paper establishes 34 groups of visual and auditory
subtasks for autonomous vehicles under three conditions
(straight path, roundabout cut-in, and roundabout obstacle
avoidance) and conducts 102 takeover experiments. After
data screening and criteria extraction through nodes, takeover
segments are extracted and divided according to the time
nodes marking the start and end of the entire process, as
well as those of the takeover.

Regarding takeover time, it is divided into takeover reac-
tion time and takeover execution time. Takeover reaction time
refers to the duration between the system’s takeover request
and the driver’s return to the driving task (both hands back on
the steering wheel), while takeover execution time is the sum
of the duration during which the steering wheel angle≥ 2◦

and the pedal was pressed ≥ 10%.
VTD’s takeover and distraction data can also be used to

calculate a driver’s load rate in human-vehicle co-pilot tasks
through cognitive architecture models like QN-ACTR. Based
on the load rate, driver’s fatigue level can be assessed, and
by combining the vehicle’s displacement information, a safer
and more reasonable human-vehicle driving right switching
strategy can be designed.VTD also includes unscreened raw
time series, raw videos, and tactile data so that users can
filter and combine data based on research needs and goals.

D. VTD Experiment Setup Innovation

1) Multi-channel and Multi-angle Videos: Owing to the
lack of public driver behavior datasets, most datasets are
single-mode (RGB). For safety reasons, only simple visual
signals can be collected in actual driving processes. These
visual features usually depend on cameras and sensors di-
rected toward the driver to obtain input data. The large-scale
multi-view multi-modal database we constructed, VTD, can
fill the gap for single visual signals. The accuracy of features
extracted from facial detection, head pose estimation, and eye
status analysis can be enhanced using multi-view information
like driving view, eye movement, and facial view [34].

Moreover, eye trackers’ high sampling rate, high precision,
and low noise are advantageous compared to visual feature
detection. Other modal features can be tuned to enhance the
overall recognition rate using multi-view feature extraction
and fusion.

Eye detection and eye status analysis are crucial to driver
distraction and fatigue detection. Head rotation and eye
closure rate can be calculated by applying PERCLOS to
measure a driver’s fatigue level and PERLOOK [35] to
measure ametropia duration. Due to limitations in resolution,
camera-eye distance, and lighting conditions, it is not easy
to calculate and distinguish the accuracy of data results from
current mainstream datasets. However, VTD adopted Tobii
Glasses3 to obtain omnidirectional eye movement tracking
data from various angles, thus achieving the capture of high-
precision eye movement data in an extensive range.

In current mainstream research methods, behavior anal-
ysis and fatigue detection have also been conducted
by fully using the drivers’ diverse characteristics. These
include detecting physiological signals, such as using
EOG(Electrooculography) and ECG[35, 36] or combining
driving measurements (Steering wheel angle, steering speed,
accelerator pedal angle, etc.) [37, 38]. In all of the above
scenarios, VTD is adaptable.

2) Tactile sensing device for driver’s ECG: To minimize
the impact of the ECG devices on the driver, these devices
are fixed on the G29 steering wheel. Signals are acquired
through two flexible electrodes and transmitted to the col-
lection program via USB, where they are saved as real-time
texts. In contrast to signal acquisition from the participants’
left and right earlobes, participants only need to hold the
electrode area of the steering wheel to perform real-time
heart rate detection. This approach significantly reduces the
chance of distraction and mitigates the devices’ impact on
the experiment.

E. Data Processing Method Innovations

To better align the dataset with the training model, normal-
ization preprocessing is performed on the time-series data,
which is then categorized according to research directions.
Regarding driving fatigue detection, the VTD dataset con-
tains 11-dimensional time series information and includes
data series of the drivers’ frontal image, ECG signals, and
the vehicle’s motion state. Fatigue levels are then graded
by subjective evaluations combined with self-assessment
and other’s assessment, thus realizing data calibration of
Human-in-the-loop. Subsequently, dimension reduction and
screening are performed on the above data to ensure a strong
correlation between the data and the driver behaviors.

Table III7 presents the 10 dimensional sequence informa-
tion and analysis results of VTD fatigue data. The time series
in some dimensions are chosen and investigated using One-
way ANOVA (Analysis of Variance) to determine whether
time series features are salient under different fatigue levels.

7”++++” represents very significant differences (α < 0.01); ”+++”
represents significant differences (0.01 ≤ α < 0.05).



Time series Signal Clue F P S

EAR

Driver Frontal Image Signal

PERCLOS 10.2095 4.3141×10−6 ++++

Blinking Rate 4.2819 5.5569×10−3 ++++

MAR MAR(SD) 4.0222 8.1897×10−3 ++++

Head Tilt Head Tilt(SD) 14.1214 2.0341×10−8 ++++

Head Yaw - - - -

Head Roll - - - -

R-R ECG
SDNN 12.3479 1.7280×10−7 ++++

RMSSD 14.1791 7.8400×10−9 ++++

Steering Wheel Angle

Vehicle Signals

Steering Angle(SD) 6.4363 5.5569×10−2 +++

Pedal Pedal(SD) 3.5743 1.4349×10−2 ++++

Vehicle Speed Speed(SD) 7.0730 1.2934×10−4 ++++

Transverse Angular Velocity Transverse Angular Velocity(SD) 5.7549 1.6380×10−4 ++++

TABLE III: Analysis of 10-Dimensional Time Series Information and F, P, and Significance Levels in Fatigue Data

Dataset Features People Quantity Environment

PUBLIC DISTRACTION DATASETS

3MDAD[15] Comprehensive 50 507 min videos, 20-34 sec each Act + Real

DMD[16] Comprehensive 37 41h RGBD+IR videos Real + Lab

VIVA[17] Hands 8 2000+ images Act

DriveAHead[18] Heads 20 100 million Depth & IR images Real

DAD[19] Behavior 31 783 min videos Act

MDAD[20] Driver action 50 2x2x800 video sequences Real + Lab

Ours VTD Comprehensive 17 6 types of scenarios, 102 takeover experiments,630 min videos Real + Lab

DMS PUBLIC FATIGUE DATASETS

YawDD[25] Yawning 107 342 videos, 15-40 sec each Act + Real

ZJU[26] Eye Blinking 20 80 videos Act + Lab

NTHU[27] Drowsiness 36 360 videos, 1 min each Act + Simulated

RLDD[28] Drowsiness 12 180 videos, 10 min each Real + Lab

NTHU-DDD[27] Comprehensive 36 RGB + TXT Act

DMD[16] Comprehensive 37 41h RGBD+IR videos Real + Lab

CMU-PIE[29] Head Pose 72 1503 images Real + Lab

Ours VTD Comprehensive 15 600 min videos,10-Dimensional Time-Series Signals Real + Lab

TABLE IV: Comprehensive Summary and Comparison of Public Fatigue and Distraction Datasets with VTD

From the ten features analyzed, VTD’s fatigue data and
driver fatigue are strongly correlated8. All are valid inputs
for the fatigue classification model.

This paper examines the differences in various takeover
scenarios and subtasks under conditions of distraction and
takeover. The findings indicate significant differences in
collision avoidance conditions between straight roads and
roundabouts (P = 5.536 × 10−10 < 0.05,P = 2.879 ×

8The F-value in Table III needs to be averaged over the serial information
of each dimension and the total data, after which the specific value is
obtained by calculating the ratio of the between-groups variance (MSA)
to the within-groups variance (MSE). We assume that it satisfies the
distribution F (k − 1, n − k), and obtain the probability P based on the
F distribution, setting the significance level α = 0.05 as the benchmark.
When p < α , it is considered that there is a significant difference between
different serial data.

10−2 < 0.05); there are also significant differences under
visual and auditory subtasks (P = 9.120×10−4 < 0.05,P =
6.060 × 10−3 < 0.05). These results suggest that different
subtasks and takeover scenarios impact takeover reaction
time.

IV. PROPERTIES

A. Video Data Characteristics and Applications

VTD contains various complex combinations of visual
indications and different fatigue levels and distractions in
takeover tasks. The experiment includes 10-hour fatigue
driving data from 15 participants and 102 takeover multi-
dimensional experiment data from 17 participants (includ-
ing recorded video data).Table IV lists a comparison of
attributes between VTD and existing datasets. Compared to



other publicly available data, VTD offers multimodal, multi-
view, diverse, and fine-grained data that is controllable and
quantifiable. This provides rich data support for research
on human-machine collaborative driving systems and driver
safety monitoring systems.

Another key highlight of VTD is the construction of
a long-sequence multimodal natural data based on visual-
tactile data fusion. We designed extended time-series seg-
ments integrating multiple modalities, including RGB facial
video, vehicle motion data, tactile ECG data and images
captured by the eye trackers in driving scenarios. This com-
prehensive approach enhances data diversity and granularity,
providing critical insights into driver fatigue and distrac-
tion.These video data can be utilized in studies including
driver fatigue detection, distraction monitoring, and human-
vehicle driving control transitions.

B. Properties and Functions of Tactile Data

VTD provides piezoelectric tactile ECG data and steer-
ing wheel data. In the 40-minute experiment, we gathered
drivers’ ECG and PPG data using their tactile feedback to
the flexible electrode during real-time driving. At the same
time, 7-dimensional data of the steering wheel, the vehicle
direction, the brake, the accelerator, the gear position, and
the turning angle were collected. The driver’s feedback and
steering wheel data formed cross-validation.

Traditional visual driving behavior detection methods are
limited by lighting conditions and the vehicle’s location.
Consequently, they are unable to satisfy continuous, high-
quality visual signal collection. Additionally, visual identity
systems are also faced with problems including but not lim-
ited to computing power issues and communication delays.
We can partly solve the above issues with the wearable
piezoelectric tactile device without creating constraints or
disturbance caused by traditional wearable devices. However,
difficulties still exist, for example, too many environmental
interference sources and insufficient robustness for dynamic
changes in signals and environments[39, 40]. A breakthrough
that future driver behavior perception technology should
anticipate is a combination of vision and tactile sensations
that can balance the driver’s state, the accuracy of behavior
recognition, and application adaptability.

C. Properties and Functions of Visual-tactile Combinations

Combining vision and tactile sensation can compensate for
the robustness of visual perception by incorporating the vi-
sual modality’s sensitivity to position and movement and the
tactile modality’s rapidity. It can reduce the system delay un-
der the risk of data overload and form mutual complementary
effects under vehicle tracking and collision avoidance control
[41]. Visual-tactile fusion requires temporal embedding when
combined with multi-dimensional time-series data. Positional
embeddings are also added to non-linear transformed time
series to leverage the sequential correlations based on time
steps. While using Transformer to classify time series and
make predictions, positional embeddings can be employed
to solve the scene adaptation issue of position data and time

series in Transformer. These positional embedding vectors,
along with multi-dimensional time series, can be injected
into the model as additional input.

V. CONCLUSIONS

This paper presents a method for constructing a long-
sequence multimodal natural dataset based on visual-tactile
data fusion. The aim is to provide data support for quantify-
ing and validating drivers’ fatigue and distraction detection
across identical driving scenarios, as well as for cross-
modal perception algorithms related to driver behaviors, such
as driving takeover monitoring. To meet various research
demands, the VTD dataset includes data on fatigue driving
and the drivers’ visual and tactile behaviors during human-
vehicle driving control transitions. This work aims to estab-
lish a standardized platform for benchmark testing, thereby
advancing the development of driver behavior perception and
enhancing research on driving safety.
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