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Abstract—In recent years, graph representation learning has
undergone a paradigm shift, driven by the emergence and
proliferation of graph neural networks (GNNs) and their hetero-
geneous counterparts. Heterogeneous GNNs have shown remark-
able success in extracting low-dimensional embeddings from com-
plex graphs that encompass diverse entity types and relationships.
While meta-path-based techniques have long been recognized for
their ability to capture semantic affinities among nodes, their
dependence on manual specification poses a significant limitation.
In contrast, matrix-focused methods accelerate processing by
utilizing structural cues but often overlook contextual richness.
In this paper, we challenge the current paradigm by introducing
ontology as a fundamental semantic primitive within complex
graphs. Our goal is to integrate the strengths of both matrix-
centric and meta-path-based approaches into a unified frame-
work. We propose perturbation Ontology-based Graph Attention
Networks (POGAT), a novel methodology that combines ontology
subgraphs with an advanced self-supervised learning paradigm
to achieve a deep contextual understanding. The core innovation
of POGAT lies in our enhanced homogeneous perturbing scheme
designed to generate rigorous negative samples, encouraging
the model to explore minimal contextual features more thor-
oughly. Through extensive empirical evaluations, we demonstrate
that POGAT significantly outperforms state-of-the-art baselines,
achieving a groundbreaking improvement of up to 14.46% in
F1-score for the critical task of link prediction and 15.76% in
Micro-F1 for the critical task of node classification.

Index Terms—Heterogeneous Graph, Graph Neural Networks,
perturbation Ontology Subgraphs.

I. INTRODUCTION

Graphs are a powerful way to represent complex rela-
tionships among objects, but their high-dimensional nature
requires transformation into lower-dimensional representations
through graph representation learning for effective appli-
cations. The emergence of graph neural networks (GNNs)
has significantly enhanced this process. While early network
embedding methods focused on homogeneous graphs, the
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rise of heterogeneous information networks (HINs) in real-
world contexts—like citation, biomedical, and social net-
works—demands the capture of intricate semantic information
due to diverse interconnections among heterogeneous entities.
Addressing HIN heterogeneity to maximize semantic capture
remains a key challenge.

In HINs, graph representation learning can be classified into
two main categories: meta-path-based methods and adjacency
matrix-based methods. Meta-path-based approaches leverage
meta-paths to identify semantic similarities between target
nodes, thereby establishing meta-path-based neighborhoods. A
meta-path is a defined sequence in HINs that links two entities
through a composite relationship, reflecting a specific type of
semantic similarity. For instance, in a social HIN comprising
four node types (User, Post, Tag, Location) and three edge
types (”interact,” ”mark,” ”locate”), two notable meta-paths are
illustrated: UPU and UPTPU. On the other hand, adjacency
matrix-based methods emphasize the structural relationships
among nodes, utilizing adjacency matrices to propagate node
features and aggregate information from neighboring struc-
tures.

Both meta-path-based and adjacency matrix-based methods
have notable limitations. Meta-path-based techniques often
struggle with selecting effective meta-paths, as the relation-
ships they represent can be complex and implicit. This makes
it challenging to identify which paths enhance representation
learning, especially in HINs, with diverse node and rela-
tion types. The search space for meta-paths becomes vast
and exponentially complex, necessitating expert knowledge
to identify the most relevant paths. A limited selection can
lead to significant information loss, adversely affecting model
performance. On the other hand, adjacency matrix-based meth-
ods focus on structural information from neighborhoods but
often overlook the rich semantics of HINs. While they can
be viewed as combinations of 1-hop meta-paths, they lack
the robust semantic framework needed to effectively capture



TABLE I
SUMMARY OF DATASETS (N TYPES: NODE TYPES, E TYPES: EDGE TYPES,

TARGET: TARGET NODE, AND CLASSES: TARGET CLASSES).

# Nodes # N Types # Edges # E Types Target # Classes # Task

DBLP 26,128 4 119,783 3 author 4 LP&NC
IMDB-L 21,420 4 86,642 6 movie 4 NC
IMDB-S 11,616 3 17,106 2 movie 4 LP
Freebase 43,854 4 151034 6 movie 3 NC
AMiner 55,783 3 153,676 4 paper 4 LP&NC
Alibaba 22,649 3 45,734 5 - - LP

implicit semantic information, leading to further information
loss.

To address these challenges, we propose using HIN rep-
resentation learning based on Ontology [1], which compre-
hensively describes entity types and relationships. Ontology
models a world of object types, attributes, and relationships
[2], emphasizing its semantic properties. Since HINs are
semantic networks constructed based on Ontology, we assert
that Ontology provides all necessary semantic information. We
define a minimal HIN subgraph that aligns with all possible
ontology descriptions as an ontology subgraph. An HIN can
be seen as a concatenation of these ontology subgraphs,
which offer a complete context for nodes, representing the
minimal complete context of each node. Nodes within an
ontology subgraph are considered ontology neighbors, forming
a local complete context. Compared to meta-paths, ontology
subgraphs encompass richer semantics, capturing all node and
relation types along with complete context, while meta-paths
are limited in scope. Although meta-paths are based on On-
tology, ontology subgraphs can capture semantic similarities
to some extent. Importantly, the structure of an ontology
subgraph is predefined, requiring only a search rather than
manual design. In contrast to adjacency matrices, ontology
subgraphs represent the smallest complete semantic units with
rich semantic information and also provide structural insights
due to their natural graph structure. In summary, Ontology
combines the strengths of both meta-paths and adjacency
matrices.

In this paper, we present Perturbation Ontology-based
Graph Attention Networks (POGAT) for graph representation
learning that leverages ontology. To improve node context
representation, we aggregate both intra-ontology and inter-
ontology subgraphs. Our self-supervised training incorporates
a perturbation strategy, enhanced by homogeneous node re-
placement to generate hard negative samples, which helps
the model capture more nuanced node features. Experimental
results demonstrate that our method surpasses several existing
approaches, achieving state-of-the-art performance in both link
prediction and node classification tasks.

II. METHODS

With ontology subgraphs serving as the most basic semantic
building blocks, this section aims to devise a contextual
representation of nodes utilizing these subgraphs

First of all, we prepare the input node and edge embeddings
within an ontology subgraph to be passed to the Graph
Transformer Layer. For an Ontology sub-graph G with node
features αi ∈ Rdn×1 for each node i and edge features
βij ∈ Rde×1 for each edge between node i and node j, the
input node features αi and edge features βij are passed via
a linear projection to embed these to d-dimensional hidden
features h0

i and e0ij .

ĥ0
i = A0αi + a0 ; e0ij = B0βij + b0, (1)

where A0 ∈ Rd×dn , B0 ∈ Rd×de and a0, b0 ∈ Rd are the
parameters of the linear projection layers. Then we embed the
pre-computed node positional encodings of dim k via a linear
projection and add to the node features ĥ0

i .

λ0
i = C0λi + c0 ; h0

i = ĥ0
i + λ0

i , (2)

The Graph Transformer layer closely resembles the trans-
former architecture originally proposed in [?]. Next, we will
define the node update equations for layer ℓ.

ĥℓ+1
i = Oℓ

h∥Hk=1

( ∑
j∈Ni

wk,ℓ
ij V k,ℓhℓ

j

)
, (3)

where, wk,ℓ
ij = softmaxj

(Qk,ℓhℓ
i · Kk,ℓhℓ

j√
dk

)
, (4)

and Qk,ℓ,Kk,ℓ, V k,ℓ ∈ Rdk×d, Oℓ
h ∈ Rd×d, k = 1 to

H denotes the number of attention heads, and ∥ denotes
concatenation.

To ensure numerical stability, the outputs after exponenti-
ating the terms inside the softmax are clamped between −5
to +5. The attention outputs ĥℓ+1

i are then passed to a Feed
Forward Network, which is preceded and followed by residual
connections and normalization layers, as follows:

ˆ̂
hℓ+1
i = LayerNorm

(
hℓ
i + ĥℓ+1

i

)
, (5)

ˆ̂
ĥℓ+1
i = W ℓ

2ReLU(W ℓ
1
ˆ̂
hℓ+1
i ), (6)

hℓ+1
i = LayerNorm

(
ˆ̂
hℓ+1
i +

ˆ̂
ĥℓ+1
i

)
, (7)

where W ℓ
1 ,∈ R2d×d, W ℓ

2 ,∈ Rd×2d, ˆ̂hℓ+1
i ,

ˆ̂
ĥℓ+1
i denote inter-

mediate representations. The bias terms are omitted for clarity.
Given that each ontology subgraph Oi associated with

the target nodeu independently yields an intra-aggregation
representation, it becomes imperative to integrate the rich
semantic information emanating from each of these subgraphs
within the broader network N via an inter-aggregation pro-
cess. Considering the minimal context semantic should be
equivalent to each other, we turn to use multi-head attention
mechanisms to aggregate the semantic information between
ontology subgraphs:

h(l)
u = ConCat(σ(hO(i),k,(l)

u )), (8)



TABLE II
PERFORMANCE EVALUATION ON NODE CLASSIFICATION.

In this table, tabular results are in percent; the best result is bolded.

Methods DBLP IMDB-S Freebase AMiner
Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

GAT 93.39 ±0.30 93.83 ±0.27 64.86 ±0.43 58.94 ±1.35 69.04 ±0.58 59.28 ±2.56 84.92 ±0.68 74.32 ±0.95
RGCN 92.07 ±0.50 91.52 ±0.50 62.95 ±0.15 58.85 ±0.26 60.82 ±1.23 59.08 ±1.44 81.58 ±1.44 62.53 ±2.31
HetGNN 92.33 ±0.41 91.76 ±0.43 51.16 ±0.65 48.25 ±0.67 62.99 ±2.31 58.44 ±1.99 72.34 ±1.42 55.42 ±1.45
HAN 92.05 ±0.62 91.67 ±0.49 64.63 ±0.58 57.74 ±0.96 61.42 ±3.56 57.05 ±2.06 81.90 ±1.51 64.67 ±2.21
GTN 93.97 ±0.54 93.52 ±0.55 65.14 ±0.45 60.47 ±0.98 - - - -
MAGNN 93.76 ±0.45 93.28 ±0.51 64.67 ±1.67 56.49 ±3.20 64.43 ±0.73 58.18 ±3.87 82.64 ±1.59 68.60 ±2.04

RSHN [3] 93.81 ±0.55 93.34 ±0.58 64.22 ±1.03 59.85 ±3.21 61.43±5.37 57.37 ±1.49 73.33 ±2.71 51.48 ±4.20
HetSANN [4] 80.56 ±1.50 78.55 ±2.42 57.68 ±0.44 49.47 ±1.21 - - - -
HGT [5] 93.49 ±0.25 93.01 ±0.23 67.20 ±0.57 63.00 ±1.19 66.43 ±1.88 60.03 ±2.21 85.74 ±1.24 74.98 ±1.61
HINormer [6] 94.94 ±0.21 94.57 ±0.23 67.83 ±0.34 64.65 ±0.53 69.42 ±0.63 63.93 ±0.59 88.04 ±0.12 79.88 ±0.24

POGAT 96.71 ±0.25 96.21 ±0.22 74.33 ±0.35 72.42 ±0.37 74.12 ±0.49 72.74 ±0.47 93.37 ±0.13 88.24 ±0.28

TABLE III
MODEL PERFORMANCE COMPARISON FOR THE TASK OF LINK PREDICTION ON DIFFERENT DATASETS.

In this table, tabular results are in percent; the best result is bolded. A dash (-) denotes that the models run out of memory on large graphs (64GB).

Method AMiner Alibaba IMDB-L DBLP
R-AUC PR-AUC F1 R-AUC PR-AUC F1 R-AUC PR-AUC F1 R-AUC PR-AUC F1

node2vec [7] 0.594 0.663 0.602 0.614 0.580 0.593 0.479 0.568 0.474 0.449 0.452 0.478
RandNE [8] 0.607 0.630 0.608 0.877 0.888 0.826 0.901 0.933 0.839 0.492 0.491 0.493
SGC [9] 0.589 0.585 0.567 0.686 0.708 0.623 0.826 0.889 0.769 0.601 0.606 0.587
R-GCN [10] 0.599 0.601 0.610 0.674 0.710 0.629 0.826 0.878 0.790 0.589 0.592 0.566
MAGNN [11] 0.663 0.681 0.666 0.961 0.963 0.948 0.912 0.923 0.887 0.690 0.699 0.684
HPN [12] 0.658 0.664 0.660 0.958 0.961 0.950 0.900 0.903 0.892 0.692 0.710 0.687
PMNE-n [13] 0.651 0.669 0.677 0.966 0.973 0.891 0.674 0.683 0.646 0.672 0.679 0.663
PMNE-r [13] 0.615 0.653 0.662 0.859 0.915 0.824 0.646 0.646 0.613 0.637 0.640 0.629
PMNE-c [13] 0.613 0.635 0.657 0.597 0.591 0.664 0.651 0.634 0.630 0.622 0.625 0.609
MNE [14] 0.660 0.672 0.681 0.944 0.946 0.901 0.688 0.701 0.681 0.657 0.660 0.635
GATNE [15] OOT OOT OOT 0.981 0.986 0.952 0.872 0.878 0.791 OOT OOT OOT
DMGI [16] OOM OOM OOM 0.857 0.781 0.784 0.926 0.935 0.873 0.610 0.615 0.601
FAME [17] 0.687 0.747 0.726 0.993 0.996 0.979 0.944 0.959 0.897 0.642 0.650 0.633
DualHGNN [18] / / / 0.974 0.977 0.966 / / / / / /
MHGCN [19] 0.711 0.753 0.730 0.997 0.997 0.992 0.967 0.966 0.959 0.718 0.722 0.703
BPHGNN [20] 0.723 0.762 0.723 0.995 0.996 0.994 0.969 0.965 0.943 0.726 0.734 0.731
POGAT 0.804 0.812 0.801 0.998 0.997 0.994 0.967 0.986 0.975 0.838 0.819 0.803
Std. 0.012 0.014 0.011 0.011 0.010 0.011 0.012 0.013 0.012 0.013 0.021 0.012

OOT: Out Of Time (36 hours). OOM: Out Of Memory; DMGI runs out of memory on the entire AMiner data. R-AUC: ROC-AUC.

where k is the number of attention heads, Concat(·) denotes
the concatenation of vectors, and we obtain the representation
of the last layer by averaging operation:

h(L)
u =

1

K

∑
k

hk,(L)
u . (9)

A. Bi-level perturbation Ontology Training

To enhance the model’s ability to capture the intrinsic
semantics of ontology, we employ a perturbation technique
to modify the ontology. We also design two specific tasks to
differentiate perturbation subgraphs at both the node level and
the graph level.

1) Ontology Subgraph perturbation: In this section, we
enhance the perturbation operation on ontology subgraphs to
generate negative samples for self-supervised tasks. Initially,
we tried the common all-zero mask, which replaces node
embeddings with zero vectors, but this approach yielded unsat-
isfactory results. Drawing inspiration from [21], which used
random graphs as noise distributions, we then implemented
a random mask that selects nodes randomly for substitution,
resulting in some improvement. However, given the signif-
icant differences in information among various node types,
using random nodes can create negative samples that are too
dissimilar to the positive samples, making the task easier and
potentially reducing model performance. To address this, we



further refined our strategy by substituting nodes with similar
types, thereby constructing challenging negative samples that
enhance the model’s ability to learn from minimal contexts.

We take the ontology subgraph set (i.e., Osub) as positive
samples. Then, we randomly replaced nodes in the subgraphs
with nodes of the same type to preserve a certain level of
semantics similarity. These substitute nodes are marked with
diagonal lines. If the generated perturbation subgraph is not
included in the original ontology subgraph set, it is labeled as
a negative sample and denoted as Om

i . The set of all negative
ontology subgraphs is denoted as Om

sub. Next, we perform
shuffle operations on all positive and negative samples, further
readout the context representations of nodes to obtain a graph-
level representations of Oj :

h
Oj

G = ReadOut(hu | ∀u ∈ Oj ,Oj ∈ Osub ∪ Om
sub) (10)

2) Graph-level Discrimination:
For graph-level training, we designed a graph discriminator
based on an MLP with to determine whether the subgraph has
been perturbed:

ypred,G = DiscriminatorG
(
h
Oj

G

)
(11)

Then we calculate the cross-entropy loss:

LG =
∑
Oj

CROSSENT (ypred,G,ytrue,G) , (12)

where ytrue,G stands for the labels of graph-level task.
3) Node-level Discrimination: Give the node representation

hv for node v, we further employ an MLP ϕMLP(·; θpdt) pa-
rameterized by θpdt to predict the class distribution as follows,

ỹv = ϕMLP(hv; θpdt). (13)

where ỹv ∈ RC is the prediction and C is the number of
classes. In addition, we further add an L2 normalization on
ỹv for stable optimization.

Given the training nodes Vtr, for multi-class node classifi-
cation, we employ cross-entropy as the overall loss, as

LN =
∑
v∈Vtr

CROSSENT(ỹv,yv), (14)

where CROSSENT(·) is the cross-entropy loss, and yv ∈ RC

is the one-hot vector that encodes the label of node v. Note
that, for multi-label node classification, we can employ binary
cross-entropy to calculate the overall loss.

Finally, we performed joint training on both tasks, allowing
our model to learn minimal context semantics from both
graph-level and node-level perspectives. We optimized the
model by minimizing the final objective function:

L = γ · LN + (1− γ) · LG, (15)

where γ ∈ [0, 1] is a balance scalar.

III. EXPERIMENTS

In this section, we perform a comprehensive set of exper-
iments to assess the effectiveness of our proposed method,
POGAT, specifically targeting node classification and link
prediction tasks. Our goal is to showcase the superiority of
POGAT by comparing its performance with existing state-of-
the-art methods.

Datasets. Our experimental evaluation spans across six
publicly available, real-world datasets: IMDB-L (dataset1),
IMDB-S (dataset2), Alibaba (dataset3), DBLP (dataset4),
Freebase (dataset5), and Aminer (dataset6). A concise sum-
mary of each dataset’s statistical properties is provided in Table
1. For all baselines, we use their released source code and the
parameters recommended by their papers to ensure that their
methods achieve the desired effect.

Node classification.
We conduct a comprehensive evaluation of our model’s

efficacy in node classification tasks by comparing it against
state-of-the-art baselines. The results of this evaluation are
detailed in Table 2, where the best scores are highlighted in
bold for clarity and emphasis. Our proposed POGAT model
demonstrates a remarkable performance advantage, signifi-
cantly surpassing all baseline models in both Macro-F1 and
Micro-F1 metrics across a diverse range of heterogeneous
networks. This robust performance indicates the effectiveness
of our approach in capturing the underlying structures and
relationships within the data. For DBLP and IMDB-S, we
leverage standard settings and benchmark against the HGB
leaderboard results. For the remaining datasets, we adhere
strictly to the default hyperparameter settings of the base-
line models. Furthermore, we fine-tune these hyperparameters
based on validation performance to optimize the results.

Link prediction. Next, we evaluate POGAT’s performance
in unsupervised link prediction against leading baselines. The
results of this evaluation are comprehensively summarized in
Table 3, which provides a clear illustration of the model’s
effectiveness across various tested networks. Our findings
reveal that POGAT achieves state-of-the-art metrics in link
prediction, showcasing its capability to effectively identify
and predict connections within complex network structures.
Notably, POGAT demonstrates an average improvement of
5.92% and 5.54% in R-AUC, PR-AUC, and F1, respectively,
over the GNN MHGCN on six datasets.

IV. CONCLUSION

In conclusion, this research addresses the challenges of
heterogeneous network embedding through the introduction
of Ontology. We present perturbation Ontology-based Graph
Attention Networks, a novel approach that integrates on-
tology subgraphs with an advanced self-supervised learning
framework to achieve a deeper contextual understanding. Ex-
perimental results on six real-world heterogeneous networks
demonstrate the effectiveness of POGAT, showcasing its su-
periority in both node classification and link prediction tasks.
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