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Abstract001

With strong expressive capabilities in Large002
Language Models(LLMs), generative models003
effectively capture sentiment structures and004
deep semantics, however, challenges remain005
in fine-grained sentiment classification across006
multi-lingual and complex contexts. To address007
this, we propose the Sentiment Cross-Lingual008
Recognition and Logic Framework (SentiXRL),009
which incorporates two modules,an emotion re-010
trieval enhancement module to improve senti-011
ment classification accuracy in complex con-012
texts through historical dialogue and logical013
reasoning,and a self-circulating analysis nego-014
tiation mechanism (SANM)to facilitates au-015
tonomous decision-making within a single016
model for classification tasks.We have vali-017
dated SentiXRL’s superiority on multiple stan-018
dard datasets, outperforming existing models019
on CPED and CH-SIMS,and achieving over-020
all better performance on MELD,Emorynlp021
and IEMOCAP. Notably, we unified labels022
across several fine-grained sentiment annota-023
tion datasets and conducted category confusion024
experiments, revealing challenges and impacts025
of class imbalance in standard datasets.026

1 Introduction027

Currently, utilizing large language models (LLMs)028

for text classification tasks is a prominent research029

focus(Brown et al., 2020b). Specifically, text senti-030

ment classification has garnered widespread atten-031

tion due to its significance in understanding the nu-032

ances of human communication. Generative mod-033

els, with their powerful expressive capabilities, can034

effectively capture the structure and deep semantics035

of emotional texts, thereby demonstrating outstand-036

ing performance in sentiment recognition and clas-037

sification tasks,which is a solid foundation for other038

tasks such as roleplay, dialogue generation, and039

targeted content recommendations.Additionally, in-040

struction fine-tuning of LLMs has proven their041

exceptional adaptability to various tasks(Ouyang042

et al., 2022). However, for more complex tasks 043

such as fine-grained sentiment recognition, effi- 044

cient processing frameworks are often required. In 045

the context of multilingual communication and cul- 046

tural differences, the complexity of multilingual 047

understanding and response poses higher demands 048

on the generalization capability of LLMs. The dif- 049

fering grammatical and syntactic features across 050

languages, along with the limitations of traditional 051

algorithms that focus on structured and short dia- 052

logue scenarios while overlooking more personal- 053

ized user expressions, are among the many chal- 054

lenges that LLMs currently face. 055

Our goal is to design an efficient framework 056

for fine-grained emotion classification tasks for 057

LLMs in multilingual and complex text environ- 058

ment. To this end, we design the SentiXRL cross- 059

lingual emotion recognition framework, which en- 060

ables fine-grained emotion recognition in more 061

complex textual environment across multiple lan- 062

guages. Our architecture primarily includes an 063

efficient emotion retrieval enhancement module, 064

which connects contextual information through 065

historical dialogues and implicit inference while 066

performing emotion reasoning. Additionally, we 067

design a Self-Analytical Negotiation Mechanism 068

(SANM) to help LLMs perform emotion verifi- 069

cation and logical reasoning, thereby improving 070

emotion classification capabilities in complex texts 071

and contexts. 072

We validate our approach on several standard 073

benchmark datasets, surpassing existing SOTA on 074

most benchmarks. Furthermore, we construct the 075

largest fine-grained sentiment annotation dataset to 076

date and conduct category confusion experiments 077

, verifying the impact of category imbalance on 078

LLMs. 079

Finally, our contributions are summarized as fol- 080

lows: 081

• We propose a novel framework specifically 082
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designed for the task of cross-lingual fine-083

grained emotion recognition in large language084

models.085

• A novel Self-Analytical Negotiation Mecha-086

nism (SANM) is introduced, enhancing emo-087

tion recognition accuracy in complex environ-088

ments through logical reasoning and emotion089

verification.090

• SentiXRL outperforms most previous models091

on five standard Emotion Recognition in Con-092

versations(ERC) benchmarks and achieves093

comprehensive single-modal state-of-the-art094

on two emotion analysis datasets.095

• To address category imbalance in mainstream096

datasets, we standardized label mapping097

across multiple fine-grained emotion annota-098

tion datasets and conducted category confu-099

sion experiments. Additionally, ablation stud-100

ies on the ERC datasets highlight the advan-101

tages of the SANM module.102

2 Related Work103

Dialogue emotion recognition has evolved from tra-104

ditional machine learning methods such as SVM,105

which focused primarily on general textual senti-106

ment, to deep learning approaches. Notable among107

these are mainstream discriminative architectures108

like RNN, GNN, and LSTM (Poria et al., 2017a),109

which capture complex inter-sentence dependen-110

cies, or Transformers (Liu et al., 2023) that effec-111

tively capture contextual information. These ad-112

vancements have significantly enhanced the accu-113

racy of analysis. The emergence of multimodal114

fusion (e.g., combining speech or facial emotions)115

has enabled these discriminative models to com-116

prehensively understand and recognize emotional117

states in dialogues. However, the integration of118

more modalities introduces limitations in applica-119

tion scope and complexity in data collection. Con-120

sequently, some researchers have begun incorporat-121

ing dialogue modeling and situational interactions122

(Lei et al., 2024) or attempting to infuse common-123

sense information into emotion recognition tasks124

(Yi et al., 2022; Li et al., 2021).125

2.1 Logical Reasoning in Text Emotion126

Recognition127

In our view, both common-sense information and128

other modalities serve as supplementary informa-129

tion external to the dialogue itself. These types of130

Figure 1: The illustration of different paradigms for
ERC

information cannot fully cover all dialogue scenar- 131

ios or operate in constrained environment. There- 132

fore, enabling models to reason and validate is the 133

true solution for text emotion recognition tasks. 134

Moreover, mainstream discriminative models suf- 135

fer from complex system design and overfitting to 136

specific datasets or dialogue patterns. Thus, gener- 137

ative architectures based on large language models 138

(LLMs) have emerged as a novel approach to ad- 139

dressing these issues. The successful application 140

and emergent capabilities of LLMs (Zhao et al., 141

2023) have demonstrated their excellent perfor- 142

mance in natural language reasoning tasks. Re- 143

search has shown that LLMs can follow contextual 144

information (Brown et al., 2020a) and comprehend 145

natural language instructions (Mishra et al., 2022; 146

Chung et al., 2022). However, LLMs still under- 147

perform in reasoning tasks compared to smaller 148

models (e.g., fine-tuned BERT) (Lee et al., 2023), 149

presenting challenges for the application of LLM- 150

based logical reasoning in text emotion recognition 151

tasks. 152

3 Methodology 153

This chapter provides an in-depth overview of the 154

novel SentiXRL architecture, detailing its emo- 155

tion retrieval enhancement module, self-circulating 156
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analysis negotiation mechanism, and emotion anal-157

ysis tasks. It also thoroughly explains the experi-158

mental training and inference processes.159

3.1 Emotion Retrieval Enhancement Module160

To better leverage the reasoning capabilities of161

large language models (LLMs), we restructure the162

ERC task into a sequence format, fine-tuning the163

LLM. To adapt the LLM to the specific emotion164

recognition task at hand, we design an efficient165

emotion retrieval module. As shown in Figure 2,166

this module consists of instructions, a history win-167

dow, label statements, and emotional deduction.168

Instructions I: Define the specific task content169

and standardized format.170

History Window H: Represents the round of171

historical dialogue information used to connect172

the previous sequence of words, specifically in the173

form of:174

H = [h1, h2, . . . , hm] (1)175

Labels L: Restrict the model’s output range,176

allowing it to output label categories ld ∈ D within177

the label domain D1.178

Emotional Deduction E: Utilize the reasoning179

capabilities of the generative model to infer possi-180

ble scenarios S, characters P , and relationships R181

based on historical dialogue and the current state-182

ment. Thus, E = (S, P,R).183

Therefore, the task of this module can simplify184

the processing of the input statement ui as follows:185

Ti = [Iui , Hui , ldui , Eui ] (2)186

3.2 Self-circular Analysis Negotiation187

Mechanism188

Due to the generative nature of LLM in senti-189

ment analysis tasks, despite fine-tuning efforts and190

instruction-based constructions, there is still no191

guarantee that the output belongs to the specified192

sentiment category, especially for fine-grained sen-193

timent classification tasks. To address the need194

for correction and supervision, and to mitigate the195

potential inaccuracies and lack of specificity in196

individual LLM outputs, WE propose a cyclic veri-197

fication analysis negotiation mechanism to assist in198

1In traditional sentiment analysis, sentiment primarily in-
cludes the categories positive, negative, and neutral, and many
sentiment datasets follow this convention. In fine-grained
datasets, emotion categories can be mapped to sentiment us-
ing emotion dictionaries. However, the surprise shown in
Figure 2 needs to be categorized based on the text content.
The emotion categories appearing in Figure 2 are those used
in the datasets listed below.

completing sentiment analysis tasks. This mecha- 199

nism differs from multi-LLM negotiation strategies 200

and the supervised learning strategy using contex- 201

tual learning (ICL) paradigms. 202

The core of this strategy is a generative- 203

discriminative architecture. Unlike conventional 204

approaches requiring an additional discriminative 205

model for supervision, the proposed approach lever- 206

ages the original LLM model. Given the effective- 207

ness of full parameter training of base models in 208

fine-tuning tasks, there is no need for a separate 209

discriminator. Instead, a new module framework is 210

designed for the original model, integrating tasks 211

of inference and output credibility. This allows 212

for verification of classification objectives and ex- 213

planatory derivation following structured reasoning 214

chains after preliminary classification tasks. 215

3.2.1 Inference Generator and Deduction 216

Discriminator 217

Compared to introducing a deduction discrimina- 218

tor, utilizing the distributional inference of two 219

large language models makes the single LLM anal- 220

ysis negotiation framework more convenient and 221

efficient in handling subtasks. The key lies in im- 222

plementing an alternating role mechanism where a 223

single LLM can function both as a generator and a 224

discriminator. This paper defines distinct task tem- 225

plates for the generator and discriminator to ensure 226

that the LLM comprehends its current role and task 227

accurately. The generator judges the sentiment of 228

text and generates a chain of distributional infer- 229

ences and sentiment decisions, while the discrimi- 230

nator evaluates the generator’s output and provides 231

explanations. 232

3.2.2 Role Alternation and Consensus 233

Mechanism 234

In each interaction round, the role of the LLM 235

is clearly defined, and operations are performed 236

according to different task templates through multi- 237

round interaction processes. If the LLM reaches 238

the same sentiment decision in two consecutive 239

rounds, consensus is achieved. In case of disagree- 240

ment, multiple attempts are made within the max- 241

imum round limit. If consensus is achieved, the 242

process concludes; otherwise, an outlier is directly 243

outputted if no valid sentiment decision is reached 244

within the maximum round limit. 245

3.2.3 Mathematical Modeling 246

The self-circular analysis negotiation mechanism 247

can also be represented mathematically by mod- 248
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Figure 2: Overview of SentiXRL Framework

eling the interaction between the generator and249

discriminator as an iterative process, defined as250

follows:251

• G: Generator252

• D: Discriminator253

• T : Sentiment analysis text254

• RG: Generator response (including sentiment255

analysis)256

• RD: Discriminator response (evaluating gen-257

erator response)258

• E: Final sentiment analysis259

• N : Maximum number of cycles260

The generator G generates a response RG based261

on the sentiment analysis text T :262

R
(n)
G = G(T ) (3)263

The discriminator D generates a response RD264

based on R
(n)
G :265

R
(n)
D = D(R

(n)
G ) (4)266

If R(n)
D correctly evaluates the inference, E =267

R
(n)
G ; otherwise, n = n + 1, repeating the above268

steps until n = N or R(n)
D correctly evaluates the269

inference.270

The self-circular analysis negotiation mecha-271

nism harnesses the capabilities of a single LLM272

across multiple attempts to achieve inference and273

decision-making. This method, compared to in-274

tegrating a new inference generator utilizing the275

collective capabilities of two LLMs for the entire276

decision-making process, only requires a decision- 277

making framework, enabling multi-LLM function- 278

ality. Moreover, this approach is applicable to other 279

subtasks or LLM-based tasks, requiring only the 280

redesign of the inference framework without the 281

need for separate training of new discriminators. 282

Due to the imbalanced class distribution in the 283

standard baseline dataset used, we adopt Focal Loss 284

as the loss function for subsequent main tasks. This 285

approach increases the weight of hard-to-classify 286

samples, thereby mitigating the impact of class 287

imbalance on the results: 288

L = −αt(1− pt)
γ log(pt) (5) 289

• pt: The model’s predicted probability for the 290

actual class 291

• αt: The weighting factor to balance positive 292

and negative samples. For a sample of class t, 293

if y = 1, then α > 0 294

• γ: A modulating factor to reduce the weight 295

of easy-to-classify samples 296

The core idea of Focal Loss is to introduce the 297

modulating factor (1−pt)
γ , which reduces the loss 298

contribution from samples that the model already 299

predicts with high confidence, while increasing 300

the loss contribution from samples that the model 301

predicts with less confidence. This adjustment en- 302

courages the model to focus more on the hard-to- 303

classify samples. In our experiments, the default 304

parameters are set as: α = 0.25, γ = 2.0. 305

4 Experiments 306

Initially, we considered using cross-lingual senti- 307

ment analysis datasets, such as XED(Öhman et al., 308
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2020) or NaijaSenti(Muhammad et al., 2022), for309

our experiments. These datasets include texts from310

various language categories and offer fine-grained311

sentiment annotations. However, we ultimately de-312

cided against using them for the following reasons:313

1)For the current task of dialog sentiment anal-314

ysis, the most widely used sentiment datasets are315

primarily in English and Chinese. Many state-of-316

the-art methods and models have been validated on317

these datasets, making them more representative in318

testing. In contrast, multilingual datasets are still319

rarely used in this research area.320

2)Taking XED as an example, most cross-lingual321

sentiment datasets are originally annotated in En-322

glish, with annotations for other languages created323

through projection or translation. While this en-324

sures linguistic diversity, the cultural and linguistic325

specificity of the original language limits the ap-326

plicability of these annotations to other languages.327

This misalignment means that the dataset may not328

align with the usage habits of the target language329

communities, making it less representative for lan-330

guages other than the one in which it was originally331

annotated.332

Thus, we opted to focus on English and Chinese333

for the cross-lingual sentiment analysis task, using334

data collected from movies or personal daily con-335

tent for training and testing, allowing the model to336

better adapt to real-world scenarios.337

Firstly, for English emotion classification tasks,338

we selected several challenging datasets: MELD339

(Poria et al., 2018), EmoryNLP (Zahiri and Choi,340

2018), and IEMOCAP (Busso et al., 2008). IEMO-341

CAP is an interactive emotional dyadic motion cap-342

ture database that covers emotional exchanges in343

daily life. The MELD and EmoryNLP datasets are344

derived from dialogues in the TV show Friends,345

providing contextual information and fine-grained346

emotion labels. Particularly, EmoryNLP also in-347

cludes emotion annotations for long dialogue se-348

quences. However, it is worth noting that all349

datasets have imbalanced emotion distributions.350

For Chinese emotion recognition tasks, we chose351

CPED (Chen et al., 2022) and CH-SIMS (Liu et al.,352

2022) as standard baseline datasets to evaluate the353

effectiveness of SentiXRL. The CPED dataset in-354

cludes personal characteristics, various dialogue355

behaviors, and scenarios, while CH-SIMS offers356

richer character backgrounds and spans across dif-357

ferent ages. Therefore, these datasets pose greater358

challenges. Although some of these datasets are359

multimodal, our study currently focuses solely on360

Figure 3: Label Distribution in MELD,EmoryNLP and
IEMOCAP Dataset

the emotion categories and textual modality of the 361

data. 362

Figure 4: Label Distribution in CH-SIMS and CPED

We compared several single-text modality base- 363

lines with SentiXRL, conducting experiments on 364

the Llama2-7B (L2) and Llama3-8B (L3) models. 365

For Chinese emotion recognition tasks, the base- 366

line models included MMML (Wu et al.), ALMT 367

(Zhang et al., 2023a), bcLSTM (Poria et al., 2017b), 368

DialogXL (Shen et al., 2021), and BERT-AVG- 369

MLP (Chen et al., 2022). For English emotion 370

recognition tasks, the baseline models consisted of 371

SPCL+CL (Song et al., 2022), SACL (Hu et al., 372
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2023), EmotionIC (Yingjian et al., 2023), Dual-373

GATs (Zhang et al., 2023c), and InstructERC (Lei374

et al., 2024). For more detailed information on the375

baseline models and their implementations, please376

refer to the appendix.377

Table 1: Results on two Chinese Benchmarks

Dataset CH-SIMS CPED

Models F1 Accuracy Macro-F1 Accuracy

Discriminant Models
MMML 82.9 - - -
ALMT 81.57 - - -
bcLSTM - - 49.65 45.40
DialogXL - - 51.24 46.96
BERT-AVG-MLP - - 51.50 48.02

Generative Models
SentiXRL(L2) 76.51 83.15 32.96 47.00
SentiXRL(L3) 82.83 84.20 45.31 50.70

Table 2: Results on three English Benchmarks

Dataset IEMOCAP MELD Emorynlp Average
Models W-F1 W-F1 W-F1 W-F1

Discriminant Models

SPCL+CL 69.74 66.35 40.25 58.78
SACL 69.22 66.45 39.65 58.44
EmotionIC 69.61 66.40 40.01 58.67
DualGATs 67.68 66.90 40.29 58.29

Generative Models

InstructERC 71.39 69.15 41.37 60.64
SentiXRL(L2) 70.52 67.33 40.37 59.41
SentiXRL(L3) 71.11 68.72 42.51 60.78

4.1 Main Results378

Table 1 and Table 2 respectively present the com-379

parative results of the SentiXRL model against380

other models on Chinese and English benchmark381

datasets. The experimental results indicate that382

our method significantly outperforms existing dis-383

criminative models and surpasses the current SOTA384

models in most benchmarks. Specifically, in the385

Chinese sentiment classification task, our accuracy386

on the CPED dataset shows an improvement of387

5.6% over the existing SOTA, and the F1 score on388

the CH-SIMS dataset increases by 1.55%. Simi-389

larly, in the English sentiment classification bench-390

marks, SentiXRL achieves the highest individual391

performance on the more challenging EmoryNLP392

dataset and surpasses the existing SOTA in the av-393

erage Weighted-F1 score across three datasets. The 394

experimental results demonstrate that SentiXRL 395

excels in both Chinese and English linguistic envi- 396

ronment, validating the model’s compatibility and 397

adaptability in multilingual contexts. 398

4.2 Ablation Study 399

The ablation study results indicate that removing 400

any component leads to a decline in relevant met- 401

rics, demonstrating that each part of the SentiXRL 402

model is essential. Notably, the performance sig- 403

nificantly drops when the ANM cyclic negotiation 404

mechanism is removed, further proving the impor- 405

tance of this module. Additionally, multiple experi- 406

ments have shown that this mechanism effectively 407

helps the LLM focus on the current task. Even 408

without fine-tuning, the model’s task execution ca- 409

pability is relatively well improved. 410

4.3 Category Impact Verification 411

To validate the impact of data categories on the 412

results of SentiXRL, we conduct an experiment 413

addressing the inconsistency of emotion labels in 414

most textual sentiment datasets. In this experiment, 415

we collect high-quality, fine-grained Chinese tex- 416

tual sentiment classification datasets that are cur- 417

rently open-source on the Chinese internet. We 418

standardize the emotion labels across all datasets 419

(the mapping rules are shown in Figure 2) and per- 420

form data processing and cleaning. Detailed infor- 421

mation on data processing and dataset composition 422

can be found in Appendix B. 423

In the experiment, we design two classification 424

methods: random data mixing and equal category 425

mixing. These methods are intended to explore the 426

impact of different data mixing strategies on the 427

model. We hypothesize that due to the imbalance 428

of categories in various datasets, the independent 429

features of smaller datasets or those with fewer cat- 430

egories may be overshadowed by larger datasets. 431

Therefore, equal category sampling can better high- 432

light the characteristics and impacts of datasets 433

with fewer categories. Both methods used the same 434

data scale and hyperparameter settings. 435

Figure 5 presents the results of category valida- 436

tion. The experimental results indicate that, after 437

12K steps, the random mixing method surpasses 438

the equal mixing method in accuracy. This demon- 439

strates SentiXRL’s advantage in recognizing certain 440

emotional categories. For more complex emotional 441

categories, such as surprise, the limited textual con- 442

tent makes recognition relatively more challenging, 443
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Table 3: The ablation results of Llama2 and Llama3 on five benchmarks

Dataset IEMOCAP, MELD, EmoryNLP, Average CH-SIMS CPED

Models Weighted-F1 Weighted-F1 Weighted-F1 Weighted-F1 F1 Accuracy Macro-F1 Accuracy

Zero-shot+SentiXRL

w/o SANM + L2 - - - - 37.6 26.3 11.2 10.5
L2 41.72 32.14 27.13 33.66 52.5 49.9 21.7 27.8
w/o SANM + L3 - - - - 30.8 29.5 13.0 28.3
L3 44.85 31.67 27.96 34.83 58.7 56.0 36.8 36.4

LoRA+Backbone

w/o SANM + L2 - - - - 59.3 59.8 24.3 42.7
L2 53.27 37.69 29.51 40.16 61.2 63.6 26.8 44.5
w/o SANM + L3 - - - - 65.0 68.3 37.5 47.7
L3 55.01 38.08 30.28 41.12 67.5 71.0 39.8 49.2

LoRA+SentiXRL

w/o SANM + L2 70.52 67.33 40.37 59.41 76.5 83.2 33.0 47.0
w/o SANM + L3 71.11 68.72 42.51 60.78 82.8 84.2 45.3 50.7

Figure 5: Experimental results of SentiXRL(L3) on Unified Dataset

but this result aligns with expectations. Addition-444

ally, the loss graph shows that the dataset with445

equal mixing converges more rapidly. Due to the446

balanced distribution of categories, the model can447

learn the feature mapping relationships for all cate-448

gories more quickly. Overall, data category impact449

on SentiXRL’s accuracy is minimal.450

4.4 Model performance validation in complex451

text environments452

To further validate the generalization capability453

of the SentiXRL model, this study selected two454

additional datasets, Twitter2015(Liu et al., 2015)455

and Twitter2017(Rosenthal et al., 2017), used for456

sentiment analysis and assessing information ve-457

racity. In contrast to the datasets used in the main458

experimental section, Twitter2015 and Twitter2017459

feature longer text lengths. Unlike CPED, MELD,460

and EmoryNLP datasets sourced from scripted and461

emotional short texts from various film and TV462

show dialogues, the Twitter datasets originate from 463

social media, where data is more heterogeneous 464

and topics are less defined, thereby posing a greater 465

challenge to the model’s recognition abilities and 466

subjecting its performance to more rigorous testing 467

in complex textual and linguistic environments. We 468

conducted comparative experiments and evaluated 469

SentiXRL’s performance on these datasets using 470

Macro-F1 and Accuracy metrics. 471

The experimental results indicate that SentiXRL 472

outperforms existing models in single-modal text 473

analysis, particularly on the Twitter2015 and Twit- 474

ter2017 datasets2. It achieved improvements of 475

2.6% and 2.87% in Accuracy, and 3.21% and 476

4.63% in Macro-F1 scores, respectively. Addi- 477

tionally, SentiXRL’s performance in multimodal 478

models also ranks among the top. Therefore, these 479

2The abbreviations ‘15‘ and ‘17‘ in the ‘Acc‘ and ‘Mac-F1‘
columns refer to Twitter 2015 and Twitter 2017, respectively.
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Table 4: The Main results on Twitter Benchmark

Models Venue Acc(15) Mac-F1 Acc(17) Mac-F1

Text Only

AE-LSTM(Wang et al., 2016) EMNLP 2016 70.30 63.43 61.67 57.97
MemNet(Tai et al., 2017) EMNLP 2016 70.11 61.76 64.18 60.90
RAM(Zhang et al., 2023b) EMNLP 2017 70.68 63.05 64.42 61.01
MGAN(Hoang et al., 2018) EMNLP 2018 71.17 64.21 64.75 61.46
BERT(Devlin et al., 2019) NAACL 2019 74.15 68.86 68.15 65.23

Image and Text

MIMN(Xu et al., 2019) AAAI 2019 71.84 65.59 65.88 62.99
ESAFN(Yu et al., 2020) TASLP 2019 73.38 67.37 67.83 64.22
VilBERT(Lu et al., 2019) NeurIPS 2019 73.69 69.53 67.86 64.93
TomRoBERTa(Yu and Jiang, 2019) IJCAI 77.46 72.95 71.12 69.49
ModalNet-Bert(Zhang et al., 2021) WWW 2021 76.71 70.93 69.55 67.28
EF-CapRoBERTa(Khan and Fu, 2021) ACM 78.19 73.51 71.14 68.74
FITE(Yang et al., 2022) EMNLP 2022 78.49 73.90 70.90 68.70
HIMT(Yu et al., 2023) TAC 2022 78.14 73.68 71.14 69.16
ITM(Yu et al., 2022) IJCAI 2022 78.27 74.19 72.61 71.97

Text Only

Ours - 77.28 70.93 70.84 69.12

results confirm that SentiXRL performs exception-480

ally well across both standard datasets and datasets481

characterized by significant information noise and482

unclear themes.483

5 Conclusion484

We introduce the SentiXRL model — an advanced485

large language model framework for multilingual486

fine-grained emotion classification in complex text487

environment,and discuss the Emotion Retrieval488

Enhancement Module and Self-circular Analy-489

sis Negotiation Mechanism within this architec-490

ture. This study utilized bilingual Chinese-English491

datasets and validated the model’s effectiveness492

through comparative experiments and ablation stud-493

ies. Experimental results demonstrate that Sen-494

tiXRL achieved improved accuracy across multi-495

ple standard datasets, showcasing its superior per-496

formance in emotion recognition tasks and effi-497

cient fine-grained emotion classification in multi-498

lingual settings. Compared to traditional discrimi-499

native models, SentiXRL is capable of generating500

richer and more accurate emotion category labels.501

The Self-circular Analysis Negotiation Mechanism502

(SANM) further enhances model stability and ac-503

curacy through alternating roles of generator and504

discriminator, facilitating self-supervision and val- 505

idation. The effectiveness of SentiXRL suggests 506

new directions for future research in emotion recog- 507

nition. 508

6 Limitation 509

SentiXRL currently focuses solely on unimodal 510

textual information, and due to limitations in the ex- 511

perimental environment, this study was conducted 512

using a pre-trained model with a maximum of 8 bil- 513

lion parameters. In the future, we will explore the 514

potential for multimodal research and extend our 515

investigations to include testing on Arabic,Hindi 516

and Spanish. These languages, being among the 517

most widely spoken after English and Chinese, will 518

help demonstrate the model’s effectiveness across 519

a broader range of linguistic contexts. 520
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A Model Fine-Tuning765

Due to the relatively low proportion of Chinese766

training data in the original Llama model, we con-767

duct fine-tuning on Chinese instructions to enhance768

its capability in understanding and expressing Chi-769

nese. Before conducting experiments, we fine-tune770

the model using approximately 3.5 million samples771

from the BELLE dataset and the moss-003 dataset772

released by Fudan University’s MOSS team. Dur-773

ing fine-tuning, we employ the Stanford Alpaca774

template, an effective training method designed to775

improve the model’s ability to understand and ex-776

ecute instructions more effectively throughout the777

training process.778

B Introduction to Baseline Model779

Here is the detailed introduction of the baseline780

model in the supplementary experimental section.781

• MMML782

MMML (Multimodal Multi-loss Fusion783

Network) proposes a multimodal multi-784

loss fusion network that compares differ-785

ent fusion methods and evaluates the im-786

pact of multi-loss training in multimodal787

fusion networks. It enhances model788

performance significantly by integrating789

contextual information.790

• ALMT791

ALMT (Adaptive Language-guided792

Multimodal Transformer) introduces793

an Adaptive Hyper-modality Learning794

(AHL) module to learn representations795

that suppress irrelevant/conflicting infor-796

mation from visual and audio features797

under the guidance of language features798

at different scales. By effectively799

suppressing redundant information in 800

visual and audio modalities, ALMT 801

improves performance significantly 802

across several popular datasets. 803

• bcLSTM 804

bcLSTM designs a model based on Long 805

Short-Term Memory (LSTM) networks, 806

allowing the capturing of contextual in- 807

formation within the same video seg- 808

ment. By recognizing relationships be- 809

tween environments and characters, it 810

aids in better character emotion classifi- 811

cation. This method demonstrates robust 812

generalization capabilities. 813

• DialogXL 814

DialogXL is a pre-trained language 815

model specifically designed for dialogue 816

emotion recognition tasks. By en- 817

hancing recursive mechanisms and self- 818

attention mechanisms and improving 819

memory capabilities, DialogXL effec- 820

tively improves emotion recognition per- 821

formance. DialogXL modifies XLNet’s 822

recursive mechanism from paragraph- 823

level to utterance-level to better simulate 824

dialogue data, and introduces dialogue- 825

aware self-attention to capture useful de- 826

pendencies within and between speakers. 827

• CPED(BERT+AVG+MLP) 828

The CPED paper introduces the 829

BERT+AVG+MLP model for emotion 830

recognition in dialogues (ERC). This 831

model combines BERT’s pre-trained 832

language model with average pooling 833

(AVG) of BERT’s hidden layer outputs, 834

passing this output through a multi-layer 835

perceptron (MLP) to predict emotion 836

labels. 837

• SPCL+CL 838

This approach involves a novel Super- 839

vised Prototypical Contrastive Learning 840

(SPCL) loss function for emotion recog- 841

nition in dialogues, outperforming tra- 842

ditional supervised contrastive learning 843

losses. SPCL performs well on imbal- 844

anced data categories, is insensitive to 845

training batch size, and reduces compu- 846

tational resource requirements. 847
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Table 5: Fine-tuning hyperparameter settings for Chinese Instruction

Full parameters Full parameters

Base Model Meta-Llama-2-7B-Instruct Meta-Llama-3-8B-Instruct
Epochs 1 2
Learning Rate 2e-4 3e-6
LR Scheduler Type constant cosine
Context Length 2K 8K
Attention Heads 32 32
Key Value Heads 32 8
Warmup Ratio 0.01 0.1

• SACL848

SACL (Supervised Adversarial Con-849

trastive Learning) is a supervised adver-850

sarial contrastive learning framework. It851

trains adversarial examples by contrast-852

ing perceptual adversarial training to gen-853

erate worst-case samples. It uses joint854

category expansion contrastive learning855

objectives to extract structured represen-856

tations, effectively leveraging label-level857

feature consistency and preserving fine-858

grained intra-class features. To mitigate859

the negative impact of adversarial pertur-860

bations on context-dependent data, the861

framework includes a context adversarial862

training strategy to learn more diverse863

features from contexts, enhancing the864

model’s contextual robustness.865

• EmotionIC866

EmotionIC models emotional dependen-867

cies in dialogues based on emotional in-868

ertia and contagion. Compared to pre-869

vious ERC models, EmotionIC provides870

a more comprehensive modeling of di-871

alogues at both feature extraction and872

classification levels. The model attempts873

to integrate the advantages of attention-874

based and recursive-based approaches at875

the feature extraction level.876

C Unified Dataset877

Given the standard baseline datasets chosen, such878

as CPED, MELD, and EmoryNLP, sourced from di-879

alogue lines of TV show characters, most recorded880

text sentiments tend towards positive emotions, re-881

sulting in an overall imbalanced category distribu-882

tion. Our unified dataset experiment aims to inves-883

tigate the impact of this category bias on SentiXRL.884

Our approach to validation involves gathering a 885

larger-scale, fine-grained emotional data set, aim- 886

ing not only to balance category proportions but 887

also to mitigate the influence of scripted dialogue 888

styles and situational contexts typical in TV dra- 889

mas. 890

Table 6: Twitter Dataset Category Weighting Table

Neutral Positive Negative

Twitter 2015 0.563 1.139 2.884
Twitter 2017 0.723 0.786 2.899

D Overhead and Computational 891

Efficiency Comparison 892

The Llama2 and Llama3 models we used were 893

trained and tested on a single L20 GPU, which in- 894

deed requires certain hardware specifications. How- 895

ever, by deploying the model within the SentiXRL 896

framework, we found that on a single L20 GPU, 897

text with a length of less than 500 characters, under 898

the self-circulating analysis and negotiation mech- 899

anism (SANM) with Max_round = 3, has an 900

average processing time of 1.8s (based on an aver- 901

age of 1000 sample data). This is not significantly 902

different from the 1.4s for zero-shot deployment of 903

the model alone. Therefore, the additional compu- 904

tational load brought by the SentiXRL framework 905

is within an acceptable range. The computational 906

capacity of large models is indeed highly depen- 907

dent on the hardware environment, which imposes 908

limitations on deployment. 909
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Figure 6: BELLE Data Structure Distribution

Figure 7: Moss Data Structure Distribution
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Table 7: Introduction to Unified Datasets

Dataset Emotion Categories Data Scale

OCEMOTION sadness, happiness, disgust,
anger, like, surprise, fear

35693

Chinese Caption Sentiment Dataset neutral, happiness, sadness,
disgust, anger, surprise, fear

6583

Smp2020WECT neutral, happy, angry, sad, fear,
surprise

34768

Smp2020EWECT Covid neutral, happy, angry, sad, fear,
surprise

13606

Emotion Corpus Microblog happiness, sadness, disgust, like,
fear, surprise, anger

39661

NLPCC2014 (whole sentence) happiness, sadness, disgust, like,
fear, surprise, anger

47283

NLPCC2014 happiness, sadness, disgust, like,
fear, surprise, anger

24715

NLPCC2013 (whole sentence) happiness, sadness, disgust, like,
fear, surprise, anger

10274

NLPCC2013 happiness, sadness, disgust, like,
fear, surprise, anger

7915
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