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Abstract—Medical Visual Question Answering (MedVQA) is a
crucial task that combines computer vision and natural language
processing to assist in clinical decision-making by answering
questions based on medical images. In this paper, we propose the
Intra-modal and Cross-modal Bilinear Attention Network (IC-
BAN), a novel model that integrates multi-scale feature extrac-
tion, self-attention mechanisms, and bilinear attention networks
to effectively fuse visual and textual features. Our approach
addresses the challenges of MedVQA by balancing accuracy
and computational efficiency. Experimental results demonstrate
that IC-BAN can achieve superior performance compared to
both traditional BAN and Transformer-based fusion methods.
This work highlights the potential of advanced bilinear attention
mechanisms in MedVQA.

Index Terms—Medical Visual Question Answering, Multi-
modal Fusion, Bilinear Attention, Multi-scale Feature Extraction

I. INTRODUCTION

Medical Visual Question Answering (MedVQA) is an
emerging research area within multimodal artificial intelli-
gence that applies the general principles of Visual Question
Answering (VQA) to the medical domain. The primary ob-
jective of MedVQA is to assist healthcare professionals by
automatically answering questions related to medical images,
thereby supporting clinical decision-making processes. This
task involves the integration of computer vision and natural
language processing techniques to analyze medical images
in conjunction with natural language questions, generating
accurate and contextually relevant answers.

The complexity of MedVQA lies in the specialized nature
of medical images and the terminology used in questions,
which requires models that can capture intricate details and
relationships between visual and textual data. Traditional VQA
models, such as those utilizing VGGNet [1], ResNet [2], GRU
[3], and LSTM [4], have been adapted for MedVQA. However,
these approaches often struggle with the unique challenges
posed by the medical domain, particularly the scarcity of
labeled medical data and the need for models to generalize
effectively across diverse medical scenarios.

Recent advances in multimodal fusion techniques have
shown promise in enhancing MedVQA performance. Bilinear
attention networks (BAN) and Transformer-based models have
been widely explored for their ability to capture complex
interactions between visual and textual modalities. While

Transformer models offer powerful fusion capabilities, they
come with increased computational complexity, making them
less suitable for applications where efficiency is critical.

In this paper, we introduce the Intra-modal and Cross-
modal Bilinear Attention Network (IC-BAN), a model de-
signed to address the specific challenges of MedVQA. IC-
BAN integrates multi-scale feature extraction, self-attention
mechanisms, and bilinear attention networks to achieve a
balance between performance and computational efficiency.
By leveraging the strengths of BAN and enhancing it with
advanced attention mechanisms, our model demonstrates com-
petitive performance without high computational costs.

II. RELATED WORK

A. Medical Visual Question Answering

Medical Visual Question Answering (MedVQA) is an
emerging research area within multimodal artificial intelli-
gence that applies the general principles of Visual Question
Answering (VQA) to the medical domain. This field combines
computer vision and natural language processing techniques
to analyze and understand medical images in conjunction
with natural language questions, with the goal of generating
accurate answers that can assist in clinical decision-making.

Initial research efforts in MedVQA adopt VQA models that
have proven effective in general VQA, and adapt them for
medical applications.

In terms of image feature extraction, researchers often rely
on pre-trained models like VGGNet [1] and ResNet [2], which
are fine-tuned for the specific task of MedVQA. On the text
side, methods like GRU [3] and LSTM [4] are commonly used
to extract textual features, while some approaches incorporate
additional semantic information derived from medical corpora
to enhance the embeddings used for question representation.

To address the challenges specific to MedVQA, such as
the scarcity of labeled medical data, various techniques have
been proposed. Nguyen et al. [5] introduced the Model-
Agnostic Meta-Learning (MAML) framework combined with
a Convolutional Denoising Auto-Encoder (CDAE) to improve
feature learning. Similarly, Liu et al. [6] utilized contrastive
learning to train a pre-trained model (CPRD) that was then
applied to MedVQA tasks. These approaches often use transfer
learning to leverage external datasets and pre-trained models
to enhance the quality of the extracted image and text features.
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Fig. 1. Overview of our proposed Intra-modal and Cross-modal Bilinear Attention Fusion Network (IC-BAN).

B. Multi-modal Fusion

In the Visual Question Answering task, multi-modal fusion
plays a crucial role by integrating visual and textual features
to enable accurate classification. The performance of VQA
models largely depends on the effective extraction of features
within modalities and the subsequent fusion across modalities.

Recent approaches to multi-modal fusion in VQA have
introduced various methods to enhance the integration of
visual and textual features. A foundational method is SAN [7],
which iteratively refines attention on relevant image regions
based on the given question. Bilinear pooling has been a major
focus in improving fusion by capturing complex interactions
between modalities. Yu et al. [8] proposed MFB to address
the high computational cost of bilinear pooling by factorizing
the interaction into two low-rank matrices, preserving perfor-
mance while reducing complexity. MUTAN [9] builds on this
by applying Tucker decomposition to further compress the
bilinear tensor, resulting in a more compact and efficient multi-
modal representation. To make full use of bilinear attention
maps, Kim et al. [10] proposed BAN, which capture intricate
dependencies between visual and textual features efficiently.

The advent of Transformer [11] has brought a significant
shift in multi-modal fusion strategies. Methods like LXMERT
[12], hi-VQA [13] and MCAN [14] utilize cross-modality
Transformers with separate encoders for vision and language,
followed by a cross-modality encoder to fuse the extracted
features. In the domain of Medical Visual Question Answer-
ing, Liu et al. [15] employs a Transformer-based architecture
that directly fuse image and text features to generate joint
representation. While Transformers are effective for fusion,
they require more computational resources and are more
complex compared to bilinear pooling-based methods. This
makes balancing performance and computational cost particu-
larly important in Medical Visual Question Answering, where
medical data is often limited.

III. METHOD

A. Problem Formulation

Medical Visual Question Answering is regarded as a clas-
sification task, and the objective is to identify the most
probable answer a from a predefined set of possible answers
A = {a1, a2, a3, . . . , an}. This prediction can be expressed
as:

â = argmax
a∈A

P (a | vi, qi) (1)

where P (a | vi, qi) denotes the probability of a given answer
a being correct given the image vi and the question qi, and â
is the predicted answer that maximizes this probability.

B. Multi-modal Feature Extraction

Image Encoder In this work, we employ the pre-trained
BiomedCLIP Image Encoder [16] as our image encoder. This
choice is motivated by the unique challenges posed by Med-
VQA compared to general VQA tasks. Medical images and
questions are inherently more complex, necessitating a model
with enhanced feature representation capabilities. CLIP [17],
originally designed to learn image representations through
natural language supervision, has demonstrated strong zero-
shot performance across various domains. BiomedCLIP fur-
ther fine-tunes CLIP on the PMC-15M dataset, which consists
of medical images and associated text, thereby improving its
ability to handle medical visual data. We utilize the pre-trained
BioMedCLIP to extract image features, where the input image
Ii ∈ RH×W×C is processed through the model, and the output
of its projection layer serves as the image representation vi
with a dimensionality of 512-D:

vhid = CLIP (Ii) (2)

vi = Proj(vhid) (3)



Question Encoder For the question encoder, we utilize the
pre-trained BioBERT model [18], which has been fine-tuned
on a large-scale biomedical corpus. BioBERT is based on
the BERT architecture but is specifically adapted to handle
the complex and specialized language used in the biomedical
domain. This fine-tuning allows BioBERT to capture the
nuances of medical terminology more effectively than general-
purpose language models.

Compared to traditional approaches in VQA that often
rely on LSTM [?] and GRU [?] as text encoders, BERT-
based models like BioBERT offer significant advantages, as
BERT employs a Transformer architecture, which enables it to
capture long-range dependencies and contextual relationships
within the text more effectively. This makes representations of
the input questions richer and more accurate, making it partic-
ularly well-suited for the sophisticated language demands of
Medical Visual Question Answering. In our work, BioBERT
encodes each question into a 768-D vector representation,
denoted as qi.

C. Intra-modal and Cross-modal Bilinear Attention Fusion
Network

Our proposed Intra-modal and Cross-modal Bilinear At-
tention Network (IC-BAN) integrates multi-scale feature ex-
traction, self-attention mechanisms, and bilinear attention net-
works to effectively fuse visual and textual features in Medical
Visual Question Answering. This comprehensive approach al-
lows the model to capture complex interactions across different
levels and modalities without incurring high computational
complexity.

1) Multi-scale Feature Fusion: First, the image features
vi ∈ RNv×dv and question features qi ∈ RNq×dq are passed
through a multi-scale feature extractor, where Nv = 1 for the
image features (as the CLIP output does not contain region-
level information) and Nq represents the sequence length for
the question features. The extractor splits each modality into
high- and low-scale features:

ṽlow
i , ṽhigh

i = MaxPool(vi), vi (4)

q̃low
i , q̃high

i = MaxPool(qi), qi (5)

Here, MaxPooling is applied to reduce the dimensionality
of the features, producing low-scale features while retaining
the original features as high-scale. The use of multi-scale
features enables the model to process information at different
levels of detail, which is particularly useful for tasks requiring
nuanced understanding. The low-scale features capture broader
contextual information, while the high-scale features focus on
finer details.

Both the high- and low-scale features are then processed
through intra-modal self-attention layers to enhance their con-
textual relationships within single modality. The self-attention
mechanism, combined with a feed-forward network (FFN) and
layer normalization (LN), is applied separately to each scale:

ṽatt
i = LN (ṽi + Dropout (FFN (SelfAttention(ṽi)))) (6)

q̃att
i = LN (q̃i + Dropout (FFN (SelfAttention(q̃i)))) (7)

This process is applied independently to both the low-
and high-scale features, producing refined visual and textual
features ṽlow-att

i , ṽhigh-att
i and q̃low-att

i , q̃high-att
i .

2) Cross-modal Bilinear Attention: Following the intra-
modal refinement, the IC-BAN model applies a bilinear atten-
tion mechanism to fuse the refined visual and textual features.
This mechanism computes the interactions between features
from different modalities by evaluating attention distributions
across all pairs of input channels.

For the high-scale features, the bilinear attention map Ahigh

is computed as:

Ahigh = softmax
((

Uhighṽhigh-att
i

)
◦
(
Vhighq̃high-att

i

))
(8)

where Uhigh ∈ Rdv×K and Vhigh ∈ Rdq×K are learnable
projection matrices, and ◦ denotes the Hadamard product. The
same process is applied to the low-scale features to compute
Alow.

The bilinear attention features for each attention head g are
then calculated:

f high
g =

Nv∑
j=1

Nq∑
k=1

Ahigh
jk

(
ṽj,high-att
i

)T
Uhigh

g Vhigh
g q̃k,high-att

i (9)

f low
g =

Nv∑
j=1

Nq∑
k=1

Alow
jk

(
ṽj,low-att
i

)T
Ulow

g Vlow
g q̃k,low-att

i (10)

3) Joint Feature Representation: To form the final joint
representation, our method aggregates the bilinear features
from all attention maps and from both scales. The features
are concatenated and processed through a series of linear
projections to produce the final representation:

hjoint = Concat

(
γ∑

g=1

f high
g ,

γ∑
g=1

f low
g

)
(11)

where γ denotes the number of glimpses for Bilinear Attention
Network.

4) Theoretical Analysis and Computational Complexity: In
terms of computational complexity, both the IC-BAN model
and purely cross-modal Transformer-based models compute
attention across all pairs of elements in both modalities, but
they differ in how they handle these interactions and in the
subsequent processing steps.

In a typical cross-modal Transformer-based model, the
attention mechanism has a complexity of O(Nv × Nq × d)
per layer, where Nv and Nq are the number of visual and
textual elements, respectively, and d is the feature dimension.
This complexity arises because the Transformer computes
attention weights for every possible pair of elements in the
two modalities, followed by a weighted sum that produces a
new set of feature representations.

In contrast, the Bilinear Attention Network used in IC-
BAN also calculates interactions across all pairs, but it does



so in bilinear space by factorizing the interaction into lower-
dimensional spaces. Specifically, BAN employs learnable pro-
jection matrices U and V, which project the image and text
features into a joint space where the interactions are computed.
While this operation still involves all pairs of elements, the
subsequent bilinear pooling and the use of lower-dimensional
projections (i.e., K instead of d) make the computation more
efficient in practice. The complexity of this bilinear interaction
is O(Nv × Nq × K), where K is typically smaller than d,
particularly in cases where the dimensionality reduction is
significant.

Additionally, in Transformer-based models, after the atten-
tion computation, the features are passed through multiple
layers of feed-forward networks, which further add to the
computational burden. In contrast, IC-BAN benefits from
bilinear attention’s direct aggregation of multimodal features
(except for integrated single self-attention layer), reducing the
need for extensive post-attention processing.

Therefore, while both models compute interactions across
all pairs, IC-BAN achieves a lower overall complexity by
reducing the dimensionality of the interaction space and sim-
plifying the subsequent processing steps.

D. Classifier and Loss Function

Finally, the joint representation output by the IC-BAN is
fed into the classifier to predict the most probable answer. We
utilize a simple feed-forward neural network as the classifier.
It consists of two fully connected layers with an intermediate
activation function.

â = Classify(hjoint) (12)

For the loss function, we employ the Binary Cross Entropy
with Logits Loss, which is commonly used in multi-label
classification tasks.

IV. EXPERIMENTS

A. Dataset and Metric

We use VQA-RAD dataset in our experiments, which
contains 3,515 QA pairs based on 315 radiology images.
The questions in this dataset are categorized into two types:
Closed and Open. Closed questions are those with a limited
set of possible answers, most commonly yes/no, while Open
questions are more varied and do not restrict the type of
response. The dataset is split into a training set with 3,064
question–answer pairs and a test set with 451 pairs.

For the evaluation metric, we primarily use accuracy, as
MedVQA can be viewed as a multi-class classification task.
Accuracy measures the proportion of correctly predicted an-
swers out of the total number of questions, providing a
straightforward and widely accepted indicator of model per-
formance in this context.

B. Experimental Setup

We conduct the experiments on a single NVIDIA RTX
3090 (24GB) GPU. The learning rate is set to 0.0005, with
a batch size of 32. We train the model for 40 epochs, and

TABLE I
COMPARISON OF ACCURACY (%) ON VQA-RAD TEST SET.

Methods Accuracy
Open Closed All

MEVF+SAN [5] 40.7 74.1 60.8
MEVF+BAN [5] 43.9 75.1 62.7

MMQ [20] 53.7 75.8 67.0
QCR [19] 60.0 79.3 71.6

MEVF+PubMedCLIP [21] 48.6 78.1 66.5
QCR+PubMedCLIP [21] 60.1 80.0 72.1

BiomedCLIP [16] 67.6 79.8 75.2
BiomedCLIP+IC-BAN(Ours) 67.6 80.9 75.6

the best-performing model on the validation set is saved as
the representative model. The Adamax optimizer is used to
optimize the model parameters.

At the model level, based on the architecture described in
III, we integrate the TCR module [19], which includes a pre-
trained question classifier. This classifier is used to distinguish
between open and closed questions. For each type of question,
we train and validate separate models, allowing for specialized
handling of the unique characteristics inherent in open and
closed question types.

C. Results and Analysis

The results of our experiments on the VQA-RAD test set
are summarized in Table I. As shown, the performance of
different methods is evaluated across open, closed, and overall
accuracy categories. The baseline method MEVF+SAN [5]
achieves an overall accuracy of 60.8%, while MEVF+BAN
[5] slightly improves this to 62.7%. The MMQ [20] method
further increases the overall accuracy to 67.0%. The QCR
[19] model demonstrates a significant improvement, reaching
71.6% overall accuracy. When PubMedCLIP [21] is integrated
into the QCR model, the accuracy further improves to 72.1%.
BiomedCLIP [16] achieves 75.2% accuracy, with 67.6% on
open questions and 79.8% on closed questions. Our proposed
BiomedCLIP+IC-BAN method achieves the highest accuracy
on the closed questions at 80.9% and an overall accuracy
of 75.6%, which is a modest improvement over the original
BiomedCLIP model.

From the experiments, it is evident that our method shows
a slight improvement in accuracy compared to the original
BiomedCLIP approach. Although the improvement is lim-
ited, it is important to note that the original method used a
Transformer-based fusion model (as described in [22]). This
indicates that BAN’s capability in cross-modal fusion is not
necessarily inferior to that of Transformers. The results suggest
that BAN can effectively capture the interactions between
visual and textual modalities, and in some cases, it may even
outperform Transformer-based models. The ability of BAN
to model complex interactions in a more computationally
efficient manner could be one of the contributing factors
to this performance. Additionally, the integration of the IC-
BAN model with BiomedCLIP demonstrates the potential of
combining advanced fusion techniques with domain-specific



feature extractors to achieve high performance in challenging
tasks like MedVQA.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed the Intra-modal and Cross-
modal Bilinear Attention Network (IC-BAN) for the task of
Medical Visual Question Answering (MedVQA). Our model
integrates multi-scale feature extraction, self-attention mech-
anisms, and bilinear attention networks to effectively fuse
visual and textual features. Compared to traditional BAN fu-
sion methods and Transformer-based fusion methods, IC-BAN
achieves a balanced performance in terms of accuracy and
computational efficiency. Specifically, our experimental results
demonstrate that IC-BAN, when combined with BiomedCLIP,
slightly outperforms the original Transformer-based Biomed-
CLIP model. This indicates that BAN, with its ability to
efficiently model complex interactions between modalities,
remains a competitive approach even when compared to more
recent Transformer-based methods.

For future work, there are several directions worth explor-
ing. One potential avenue is to modify the internal attention
computation structure of BAN to further enhance its ability to
capture cross-modal interactions. Additionally, incorporating
more advanced attention mechanisms or integrating external
medical knowledge could further improve the model’s perfor-
mance on MedVQA tasks.
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